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The objective of this study was to investigate techniques for integrating aerial LiDAR data into the forest yield in-
formation systems of a forest management company. Nearest neighbour (k-NN) estimation was identified as a
useful approach and a 4 000 ha case study was undertaken to provide insight into the performance of the tech-
nique in a commercial environment. A field dataset was provided by 213 ground plots installed across the study
area. Small-footprint discrete aerial LiDAR data were acquired concurrently and processed to derive descriptive
metrics across the study area. A simulated annealing algorithm was produced and used to select important vari-
ables that were then used during model development. Sampling error for the k-NN predictions was estimated using
an approachthataccounted for spatial correlation in the reference dataset. An independent validation dataset was
acquired from the forest manager’s conventional high-intensity stand assessments within the study area pro-
jected to LiDAR acquisition date. Model validation showed excellent correspondence to the independent dataset
with the responses total recoverable volume (relative mean deviation 4.3 per cent, RMSE 44.96 m3 ha21), mean
top height (relative mean deviation 1.3 per cent, RMSE 1.34 m), basal area (relative mean deviation 4.5 per cent,
RMSE 2.06 m2 ha21) and stand density (relative mean deviation 21.8 per cent, RMSE 47.39 sph). Log-product
volumes were estimated using LiDAR metrics and k-NN estimation for all stands with encouraging accuracy and
precision. Sampling error was estimated for all stands in the study area, including those with no reference plots.
Sampling error estimates were small enough for stand estimates to be useful for the forest manager in all
stands. For stands in the validation dataset the sampling errors for stand volume were smaller for the k-NN esti-
mates (median confidence interval (CI) 29.13 m3 ha21) than for the conventional inventory estimates (median
CI 37.9 m3 ha21). Imputation model error was examined and found to be insignificant.

Introduction
The use of aerial light detection and ranging (LiDAR) scanning for
forest management has been studied since the mid-1980s
(Maclean and Krabill, 1986). In recent times, LiDAR scanning has
been developed into a tool that is regularly used in the estimation
of tree and forest characteristics. There are many examples of the
use of LiDAR to estimate forest parameters such as timber volume
(Næsset, 1997), stand volume (Watt and Watt, 2013) and carbon
stock (Stephens et al., 2012). There are also several examples of
the use of this technology in an operational forest management
context from various regions including European countries
(Wallenius et al., 2012), North America (Hudak et al., 2008a,b)
and Australia (Rombouts et al., 2010). To date the use of LiDAR
for forest assessment purposes in New Zealand has remained
largely in the research sphere with the exception of a national
carbon inventory that involved a LiDAR component (Stephens
et al., 2012). Aerial LiDAR provides continuous auxiliary information
that is valuable for stand and landscape-level assessments.

Since its initial application to forest resource assessment in the
early 1990s (Tomppo and Katila, 1991), k nearest neighbour (k-NN)
imputation has become popular internationally, with peer-
reviewed publications on the topic originating from over 20 coun-
tries (McRoberts, 2012). Among other factors, the suitability of
the technique for mapping and small area estimation problems
is likely a major factor in its widespread appeal in the forest industry
(Magnussen and Tomppo, 2014).In a forest measurement context,
k-NN is regularly used to estimate stand parameters for areas that
have not been conventionally measured (Falkowski et al., 2010).
First easily measured, and relatively inexpensive, auxiliary variables
are acquired across an area of interest. In the current context this
refers to pixels in a raster detailing the distribution of LiDAR metrics.
Subsequently detailed measurements of parameters of interest
are taken at specific locations within the study area (Moeur and
Stage, 1995; Falkowski et al., 2010). Using k-NN estimation, vari-
ables measured in the field can be estimated for unmeasured
areas based on detail in the LiDAR dataset obtained from the
initial data collection. In a forest management context, the
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parameters of interest will typically be stand-level statistics, such
as recoverable volume per hectare, stand density or product
volumes per hectare at a specific age.

Procedures of this type result in two separate datasets, a large
target dataset that contains onlyauxiliary variables with complete
coverage of the study area, and a small reference dataset where
both parameters of interest and auxiliary variables have been
observed. A successful imputation will predict the desired re-
sponse parameters across the target area using the relationship
between auxiliary data and variables of interest. To that end, the
reference dataset is used to characterize the relationship
between the auxiliary variables and the parameters of interest.
The variables of interest for each cell in the target dataset are
imputed from the nearest neighbours to that cell in the reference
dataset, proximity is measured in terms of statistical similarity
among the auxiliary variables (Falkowski et al., 2010). The refer-
ence observations used to provide measurements of the variable
of interest are known as donors and statistical proximity is
described using some metric of similarity in covariate space. This
approach can be used to estimate the average of any measured
orestimated response variable across anyarbitraryarea of interest
(AOI) in the region covered by the target dataset. Examples of AOIs
in the context include stands, felling coupes, age classes, riparian
strips or even an entire forest. In simple implementations, the
target pixels in the AOI are identified. To each target, k donors
are assigned. If there are N target pixels, each with k donors,
then there are N× k response variable values and the average of
those values is used as the best estimate of the average for the
AOI. More complicated implementations first calculate a weighted
average of the k reference plot values for each of the N target
pixels, and then average those across the N target pixels. The
weight is based on the similarity between the target and reference
plot in terms of the auxiliary metrics. The accuracy of outputs from
an imputation are influenced by the selection of the similarity
metric, the auxiliary metrics, the scheme for weighting donors
and the number of donors (k). This study aimed to provide some
insight into the effect of these selections.

In addition to estimates of means and totals for AOIs, confi-
dence intervals around those estimates are essential to their
acceptance by forest managers. The fact that the estimates for
the multiple target pixels in an AOI are not independent of each
other complicates estimation of sampling error. At the very least,
two target pixels that share the same donors have predicted val-
ues and prediction errors that are highly correlated. Estimation
of sampling error for k-NN estimates is an area of ongoing re-
search (Magnussen, 2013; McRoberts et al., 2013). The method
employed in this study was the model-based approach proposed
by McRoberts et al. (2007). The technique accounts for the correl-
ation between target observations created by the sharing of do-
nors and by spatial correlation between donors.

Numerous statistical techniques are available for incorporation
of remotely sensed data into forest inventory information systems.
Following extensive review, k-NN estimation was selected as the
preferred technique for use as it has several properties suited to
the demands of forest management. A key consideration for the
study design was to provide a solution that aligns well within a
forest manager’s current yield prediction and forest regulation
system providing practical outputs that confer immediate benefits
to the forest manager. To that end an illustration from a commer-
cial plantation in New Zealand was used.

The planted forest estate in New Zealand comprises
1 719 500 ha constituting �6 per cent of the total land area. This
area of intensively managed industrial forest produces saw logs,
pulp logs and residue products for the domestic and export
markets and contributes 3.3 per cent to the nation’s gross domes-
tic product (NZFOA, 2013). The plantation resource is dominated by
Pinus radiata D. Don (P. radiata), which occupies 90 per cent of the
total resource. These plantations are typically grown on a 26–30
year rotation during which stands are thinned to a density of
�350 stems per hectare (sph). Stands may be pruned, usually in
three occasions to a height of 6 m, or unpruned. Log production
is characterized by a multitude of log-products reflecting the nu-
merous export and domestic markets. The complexity of the
market situation means that detailed forest yield information is
required.

Professional forest managers utilize forest inventory data for
long-termyield projections for planningand resource-valuation pur-
poses. In New Zealand, the accuracy and precision requirements
for detailed forest information are high. Most forest managers
require a probable limit of error of 10 per cent for stand-level esti-
mates by harvest. This means that novel approaches that can
provide precision benefits, improved information, or measurement
cost savings are particularly valuable. This paper details the refine-
ment of methods for a forest inventory methodology that incorpo-
rates remotely sensed information from airborne laser scanning
data.

The principle objectives of this research were to determine the
efficacy of the k-NN estimation method at predicting a range of
stand attributes using LiDAR. Data obtained over a major New
Zealand forest provided a suitable test for this work. Specifically
the implementation of methods for estimating sampling error,
while accounting for spatial correlation, and efficiently selecting
suitable predictor variables were a focus of this study.

Methodology

Study area

The study area for this project encompassed a 2000 m by 20 000 m swath
with a total area of 4000 ha . It was situated in Kaingaroa forest covering a
wide range of site characteristics and age classes. Kaingaroa forest, in the
Central North Island, is New Zealand’s largest contiguous plantation occu-
pying �180 000 ha. The primary forestry species in Kaingaroa is P. radiata
which occupies .95 per cent of the stocked area. Stands in the study
area are grown on a �28 year rotation. Typical regimes include an initial
stand density of �1000 sph and thinning(s) down to a final density of
300–400 sph prior to harvest. Some stands were grown on a clear-wood
regime and pruned to �6 m (m) high whereas others remained unpruned.
The study area was exclusively planted with P radiata.

Ground sampling
A total of 213 field plots were installed throughout the study area. The
ground sampling design utilized systematic sampling for the majority of
plots with the remainder located with adjusted sampling probability.
A 400 m grid, with a randomized start point and orientation, was overlaid
onto the study area and used to locate 187 plots with one at each grid inter-
section. The remaining plots were placed in order to target the range of
LiDAR metrics that had not been covered by the original 187 plots. Areas
covered by raster cells with values that had not been well sampled by the
original 187 plots were identified in a GIS and plots were placed at
random in these areas. This approach was designed to ensure that the
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full range in the LiDAR predictor variables was sampled by the ground plots.
This is important when using k-NN estimation as the technique cannot be
used for extrapolation. As the sample was not probabilistic, design-based
methods could not be used for inference.

The sampling unit was a slope-adjusted 0.06 ha circular bounded plot.
Plots were geo-located with a survey-grade global positioning system
(GPS). At least 300 points were collected at the centre point of each
ground plot and post-differentially corrected. Within each plot, tree diam-
eter at breast height (dbh) was measured on all trees, and total tree
height was measured on a sub-sample of plot trees, that were free from
major growth defects, and selected from across the dbh range present.
A minimum of eight tree heights were measured in each plot and used to
fit a regression between dbh and height, this was subsequently used to
predict the heights of unmeasured trees. Descriptions of stem form,
branching and other notable features were collected for mature trees in a
manner that allowed log-product segregation to be estimated. Using
these measurements, plot level metrics were calculated to provide a set
of response variables (Table 1).

LiDAR sampling
The candidate predictor variables used in this analysis were produced from
a discrete small-footprint aerial LiDAR dataset covering the study area.
LiDAR data were acquired in June 2012 using an Optech ALTM 3100EA
scanner. The scanner was located in a fixed-wing aircraft flown at a
height of 950 m above mean ground level. Data were acquired with a
designed density per swath of a minimum 4 pulses per square metre, and
a swath overlap of 50 per cent. The resultant point cloud was classified by
the supplier into ground, and non-ground, returns using automated rou-
tines. This process was undertaken using the TerraSolid LiDAR processing
software module TerraScan. Subsequent manual editing of the LiDAR
point cloud data was used to increase the quality of the automated classi-
fications. This editing involved visual inspection and adjustment of the data
were required.

The software product FUSION (McGaughey, 2013) was used to produce
a set of LiDAR metrics as rasters covering the study area at a 30 m×30 m
resolution. This pixel size was selected because it was consistent with the
ground plot size. In a second processing step, the same metrics were pro-
duced for locations spatially concurrent with the ground plots. These
metrics, paired with the measurements from the ground plots, formed
the reference dataset. The LiDAR metrics served as candidate predictor vari-
ables during modelling.

Model development and variable selection

All model development and graphical analysis was undertaken in the R stat-
istical software (R Core Team, 2013) and made use of the yaImpute
(Crookston and Finley, 2008) package, with semi-variograms fitted using

the gstat package (Pebesma, 2004), and random effects with the nlme
package (Pinheiro et al., 2014).

It is beneficial to select appropriate predictors for a given response to
improve prediction quality when there are many candidate predictor vari-
ables. Numerous variable selection proceduresthat are designedto cull pre-
dictors in order to select only those that are most valuable have been
studied and documented (Dalponte et al., 2008; Packalén et al., 2012),
and several of these procedures were trialled by the authors.

A comparison of several variable selection procedures (Packalén et al.,
2012) indicated that using a simulated annealing approach aimed at min-
imizing model error performed favourably as a method of variable selection
for imputation of forest parameters with remotely sensed data. Following
the technique described by Packalén et al. (2012), a randomized local
search method known as simulated annealing (Kirkpatrick et al., 1983)
was implemented in R. As implemented here variable selection via simu-
lated annealing (VSSA) seeks to minimize model root mean square differ-
ence (RMSD) by repeatedly imputing the total recoverable volume (TRV),
mean top height (MTH), basal area and stand density responses for the ref-
erence dataset, with various sets of predictors. This technique is known to
provide a good approximation of the global optimum in a large search
space, while avoiding local optima by restricting moves to poorer solutions
in a controlled manner. Selected variables included canopy cover, several
height percentiles and height distributions, and intensity percentile distri-
butions. The predictors selected using VSSA resulted in smaller values of
model error than alternative sets of predictors selected using alternative
procedures.

Nearest neighbour imputation
Following variable selection, k-NN estimation was implemented using the
random forest (Breiman, 2001)classification approach to quantifystatistic-
al proximity. Numerous other distance metrics were trialled (including
Euclidean, Mahalanobis and k-most similar neighbour) but were found to
result in higher model error. This finding was consistent with previous
studies that showed random forest to provide a robust proximity
measure (Hudak et al., 2008a,b) producing models with superior perform-
ance (Latifi and Koch, 2012).

Using the random forest distance approach, observations are consid-
ered similar if they tend to converge in the same terminal node in a suitably
constructed collection of classification and regression trees (Breiman,
2001;Liaw and Wiener, 2012).The metric used to define statistical distance
is calculated as one minus the proportion of trees where a target observa-
tion is in the same terminal node as a reference observation (Crookston and
Finley, 2008). The distance metric selected has an important role in model
performance, several comprehensive reviews of these metrics are available
(Crookston and Finley, 2008; Hudak et al., 2008a,b).

Once donors had been identified, response parameters were imputed
for each target pixel. This resulted in several surfaces covering the entire
study area and detailing the distribution of each response. A single

Table 1 Summary of ground plot and validation dataset, showing the mean, range and standard deviation of age and key stand attributes

Source Parameter Age (years) Stand density
(sph)

Basal area
(m2 ha21)

Mean top height
(m)

Total recoverable volume
(m3ha21)

Ground plots Range 2–33 220–1026 7.8–59 5.5–46.5 0–892
Mean 15 533.5 29.6 23.8 260
Standard deviation 8.8 310 17.6 12.9 240.5

Validation Range 17–32 224–564 35–59 27–46 303–774
Mean 26 347 47.5 35.2 499.4
Standard deviation 5.4 84.5 7.5 6.7 167.1
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imputation was used to predict all responses for a target pixel; once a refer-
ence plot was selected as a donor all response variables measured therein
were applied to the subject target pixel.

The effect of the additional complexity associated with using VSSA and
random forest distance were assessed through a comparison with more
simplistic approaches. Unweighted Euclidean distance was used as an al-
ternative approach to random forest distance. To provide an alternative
to VSSA the 10 predictor variables that with that were most highly corre-
lated with TRV were tested. The performance of each imputation was com-
pared by calculating RMSD for the TRV response. An optimal value of k for
each imputation model was estimated by finding the k value that mini-
mized the mean stand-level deviance from the validation dataset estimate
of TRV.

Volumes of log-products

Collection of stem form and branch size information in forest inventory plots
is standard practice in New Zealand from mid-rotation assessments
onwards. In the study area the forest manager uses optimal log bucking
software (Rawley, 2011) to calculate product volumes from these descrip-
tions and stem dimensions. The same method, with the same log-product
specifications, was used in thereference plotstocalculate productvolumes.
These were then summarized using the k-NN method for AOIs that coin-
cided with the stand boundaries of the validation dataset. Total recoverable
value per hectare, calculated using nominal log prices ($ m23) and product
volumes, was also used for comparison.

Validation dataset and agreement analysis

Detailed stand assessment is undertaken in the study forest three times
during a rotation cycle; at mid-rotation (age 15–18), 5 years prior to
harvest, and immediately pre-harvest. These assessments represent a sub-
stantial investment in measurement reflecting the high value placed on
detailed stand-level information. A database of the forest managers’
stand assessments was made available to provide a validation dataset.
The database was interrogated to extract all stand assessments that fell
within the LiDAR swath and that were yet to be harvested. Where an
assessed stand was partially within the LiDAR swath, the plots outside
the study area were excluded and the stand area was re-calculated. The
forest manager used systematic sampling to locate measurement plots
within stands; measurements were based on circular bounded plots. The
forest manager’s yield prediction systems were used to project standing
tree assessments to the date of LiDAR acquisition to provide a dataset for
comparison. Where stands had multiple measurements, only the most
recent was included in the validation and assessments .5 years old were
omitted to minimize errors associated with growth predictions. The 29
stand assessments available as a validation dataset for comparison are
summarized in Table 1.

The agreement between the k-NN estimates and the validation dataset
was examined by calculating RMSE

RMSE =

��������������
∑

(yi − y
^

i)
2

n

√√√√
(1)

where yi is the stand value of response y in the validation dataset, y
^

i
is the

k-NN estimate for the response y and n is the number of stands assessed.
The mean deviation (MD)

MD =
∑

(yi − yi
^
)

n
(2)

was also calculated to investigate any systematic differences in the
comparison.

The MD and RMSE statistics provide useful information on the precision
and accuracyof the k-NN estimates. However, from an operational perspec-
tive, these statistics may not be particularly informative. Bland and Altman
(1986) developed a set of procedures for assessing agreement between
clinical measurement techniques, including the Bland–Altman graph. An
instructive form of Bland–Altman graph (Wallenius et al., 2012) that
included a measure of tolerable discrepancy between the two inventory es-
timation techniques was used to provide additional insight. These graphs
can be considered objective assessments as neither method is assumed
to reflect the absolute truth. Wallenius et al. (2012) used a discrepancy
value of 20 per cent as a tolerable rate following the findings of a study
that included interviews with large-scale forests owners in Finland about
their information needs for operational planning (Laamanen and Kangas,
2011). No such study has been undertaken in New Zealand but the accuracy
requirements among managers of large forests are likely to be more strin-
gent. Suitable estimates of agreement based on the estimates obtained
were included in the graphical analysis.

Estimating sampling error

The sampling error estimation method employed (McRoberts et al.,
2007) required a prior analysis for spatial correlation. In this context,
spatial correlation relates to the tendency for reference plots that are
close together to generate similar imputation errors. A target pixel with
multiple donors from the same spatial cluster will tend to have low variation
in the range of imputed response values. If spatial correlation is not
accounted for, this low variation can result in an underestimate of sampling
error.

The method used for calculating sampling error for an area of interest
follows that described in detail by McRoberts et al. (2007). Briefly the
method involves:
Given an AOI with N target pixels

(1) Prepare a correlation matrix between reference plots using several
iterations. In the first iteration variance (ŝ2

i ) was constructed under
the assumption that no spatial correlation existed and iteration
stopped when no cell in the correlation matrix changed by .0.01
between the penultimate and ultimate iteration. If convergence
failed on the fitting of the empirical semi-variogram then spatial correl-
ation was assumed to be zero. The rationality of this assumption was
checked with visual inspections of semi-variogram plots.

(2) Calculate local variance (ŝ2
i ) for each target pixel from using the correl-

ation matrix from step 1.
(3) Calculate variance of k-NN estimators using equations.

Empirical semi-variograms were fitted using the gstat package of
R (Pebesma, 2004).

Assessing model error
Estimates of sampling error for k-NN estimates assume that the underlying
model is complete and correct, and provides an unbiased estimate at each
target pixel and for each AOI. The sampling errors do not take into account
any lack of fit in model predictions for an AOI. The imputation error for the
reference plots themselves were used to provide an indication of the mag-
nitude of lack of fit at the stand level. The imputation error is the difference
between the observed value of a response variable at the reference plot and
the value imputed from donors. The imputation error for an AOI has two
components. One is the sampling error, discussed above, that can be esti-
mated for an AOI. The other is model lack of fit, which arises because the
imputation model is imperfect. This lack of fit cannot be estimated for a
single AOI but its distribution is of interest.

In this analysis, a reference cell could not have itself as a donor. Add-
itionally, because the interest was in stand-level imputation errors, a refer-
ence plot could not have any donors in the same stand. These conditions
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provided a useful indication of potential model lack of fit for stands contain-
ing no reference plots. However, such techniques were not otherwise used
during k-NN estimation foran AOI. A random effects model was used to par-
tition imputation error for each reference plot between a stand-level com-
ponent (model lack of fit) and remaining noise. Analysis was limited to
stands with more than one reference plot and the imputed value for a ref-
erence plot used the single nearest neighbour that was not in the same
stand.

Results

Model development

Following variable selection, a value for each response was
imputed for all pixels in the target dataset and the reference
dataset. A comparison of RMSD between imputed and observed
values for all pixels that have both (provides insight into model per-
formance (Table 2). In this analysis RMSD was calculated using a
leave-one-out approach where a reference observation’s nearest
neighbour in the reference dataset was used for comparison with
the measured value. This statistic can be scaled by dividing by
the standard deviation of the reference values to provide a
means of comparing response with different units (Table 2). The
RMSD values for all stand attributes within the reference plots
were relatively low and these values show predictions of MTH
and TRV to be more precise than that of basal area and stand
density.

The relationship between observed and imputed values in the
reference dataset provides insight into the predictive quality of

the imputation for each response (Figure 1). Prediction accuracy
was encouraging and there was little evidence of bias for any re-
sponse based on these figures. The predictive quality for basal
area and for stand density deteriorated at higher values. There
were a small number of outliers where there was poor correspond-
ence between the observed and predicted values. These arose
when a reference cell’s nearest neighbour did not provide similar
response parameters to the reference cell itself. The relative scar-
city of these outliers suggests that this only occurred infrequently.

A comparison of the modelling techniques employed vs more
simplistic methods of predictor variable and neighbour selection
revealed that the additional complexity improved model perform-
ance (Table 3). The combination of VSSA and random forest dis-
tance was found to be the best performing combination trialled

Figure 1 Relationship between the observed and imputedvalues for the reference dataset (k¼1) for (a) Total recoverable volume (TRV), (b) Mean top height
(MTH), (c) Basal Area (BA), and (d) Stand density. The diagonal line shows the 1:1 line.

Table 2 The RMSD and scaled RMSD values for the response parameters
associated with the imputation model calculated through a leave one out
cross-validation. MD and RMSE summarize the agreement between the
conventional and k-NN estimates for the validation dataset

Variable MD Relative MD RMSE RMSD Scaled RMSD

Total recoverable volume 20.4 4.3% 44.9 51.1 0.2
Mean top height 0.4 1.3% 1.3 1.8 0.1
Basal area 2.1 4.5% 4.6 4.9 0.3
Stand density 26.7 21.8% 47.4 116.7 0.4
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for the TRVresponse. When the Euclidean distancemetric was used
using the 10 most correlated predictors performed better than the
predictors selected by VSSA. Values of k that minimize deviance
from the validation dataset estimates of TRV were also calculated
(Table 3).

Model validation and agreement analysis

The validation dataset was used to compare aggregations of
imputed pixels that had their centroid within the forest manager’s
stand boundaries with predictions from the fully independent

conventional stand inventory data. Correspondence between the
imputed and inventory values was very high for TRV (R2¼ 0.94,
RMSE¼ 4.3 per cent) and MTH (R2¼ 0.97, RMSE¼ 1.3 per cent).
Imputed and inventory values were slightly less well correlated
for basal area (R2¼ 0.69, RMSE¼ 4.5 per cent) and stand density
(R2¼ 0.70, RMSE¼21.8 per cent) (Figure 2). The calculated
RMSE and MD confirm a strong agreement between both measure-
ment techniques (Table 2). The MD statistics reveal a slight under-
estimation by the k-NN approach compared with the traditional
approach for all response variables except stand density where
there was a slight overestimation.

Estimates of TRV for the majority (76 per cent) of stands in the
validation dataset were within 10 per cent of each other using
both estimation techniques (Figure 3). The MTH values for most
(87 per cent) stands were within 5 per cent agreement and all
stands were within 10 per cent agreement using both estimation
methods. There was greater inconsistency for the basal area and
stand density response with a small number of stands showing a
discrepancy of .20 per cent but for the majority there was corres-
pondence within 10 per cent.

There was strong agreement between the k-NN estimate and
the independent conventional estimate of product mix at the
study area level (Figure 4). There was some discrepancy in the

Table 3 The RMSD on TRV and optimal k values calculated for different
combinations of variable selection and distance metric

Variable Selection Distance metric RMSD on TRV Optimal k

VSSA Random forests 51.1 2
Correlated Random forests 62.4 17
VSSA Euclidean 93.5 1
Correlated Euclidean 72.4 1

Figure 2 Relationship between k-NN estimates and conventional inventory estimates of (a) Total recoverable volume (TRV), (b) Mean top height, (c) Basal
area, and (d) Stand density for stands in the validation dataset. The solid line within each panel shows the 1 : 1 line.
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Figure 3 Bland–Altmangraphs with the grey lines showing varioustolerance limits for (a) Total recoverable volume (TRV), (b) Top Height, (c) Basal Area, and
(d) Stand Density. Each datum represents a single stand in the validation dataset and the solid black line represents the mean difference between the two
estimation techniques.

Figure 4 The barchart in the left hand panel shows average product mix for stands in the validation dataset estimated using k-NN and LiDAR metrics (k-NN)
and conventional inventory (validation). The log types refer to groupings of the forest manager’s log sorts (Ind¼ industrial saw log, Pr¼ pruned saw log,
Pt_Pr¼ part-pruned saw log, pulp¼ pulp log, Str¼ structural saw log, Utl¼ utility saw log) The right hand panel shows the relationship between the value
(in $NZ) estimated using k-NN and a conventional inventory. Values shown are at the stand level. The 1 : 1 line is shown on the plot.
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percentage of structural (Str) and utility (Util) grade products esti-
mated by the two approaches. In most instances the values pro-
duced by both methods were comparable at the stand level
although there were some outliers. In some stands, the imputed
value was considerably higher than the validation dataset value
due to the prediction of, high-value, pruned saw log volumes in un-
pruned stands. This occurred as the reference cells providing the
product mix were obtained from pruned stands whereas in fact
the target stands were in un-pruned stands. This may be a cause
for concern in a production setting and would need to be resolved.

Spatial correlation

Spatial correlation was examined by visual assessment of the vari-
ance of the differences between imputation errors for pairs of
reference plots graphed against the distance between the plots,
for all possible pairs of reference plots. A trend in which variation
increases with distance to a plateau was taken as evidence of
spatial correlation. Evidence for the presence of such a trend was
inconclusive. The effective range of spatial correlation, if any, was
found to be several hundred metres. Most of the reference plots
were located on a 400 m grid and the spatial correlation had an im-
portant influence only when additional plots were placed off the
grid.

As the exact magnitude and range of spatial correlation was un-
certain, it was considered useful to see what effect the assumed
spatial correlation had on estimates of sampling error. A compari-
son of the relative sampling error calculated both with, and
without, recognition of spatial correlation for TRV revealed, as
expected, that sampling error was lower when spatial correlation
was ignored. Across all stands ignoring spatial correlation would
lead to an under estimation of the standard error for TRV of

15 per cent; i.e. a probable limit of error of 10 per cent would in-
crease to 11.5 per cent. The effect of incorporating spatial correl-
ation into the estimates of sampling errors was sensitive to the
response variable as well as the value of k. The equivalent increases
in the standard errors forother responses were 19 percent for basal
area, 4 per cent for stand density and 12 per cent for MTH. The
effects of incorporating spatial correlation into estimates of sam-
pling error are relatively consistent across many stands. The
effects of spatial correlation were incorporated into the results
presented.

Sampling error estimates

Estimates of all response variables, with associated sampling error,
were produced for all stands in the study area using k-NN estima-
tion and LiDAR metrics whether or not that stand contained refer-
ence plots. The confidence intervals were narrow enough to
suggest that the k-NN stand-level estimates could be useful
(Figure 5). A comparison of the sampling error for k-NN estimates
and for the conventional estimates for stands in the validation
dataset (Figure 5) shows that for the majority (72 per cent) of
stands the k-NN estimate of sampling error was smaller than
the conventional estimate currently used by the forest manager.
The median confidence interval for the k-NN estimates
(29.13 m3 ha21) was smaller than the independent conventional
confidence interval (37.89 m3 ha21).

Assessing model error

Multiple models were tested and all provided the same conclusion
about the magnitude and significance of the stand-level effect.
However, a random-slopes model was the most informative

Figure 5 The left panel shows estimates of total recoverable volume, by stand, and where these could be calculated the error bars show the 95%
confidence intervals. The black diamonds represent k-NN estimates where k¼ 2, the grey triangular points represent the average of the reference plot
values in a given stand and the grey error bars show the 95% confidence interval (CI) calculated by treating the reference plots in a stand as a
sub-population of the study area. The right panel shows the relationship between total recoverable volume estimated by k-NN and the k-NN estimate
of 95% confidence intervals expressed as a fraction of the conventional estimate for the stands in the validation dataset. The solid horizontal line is
drawn at a value of 1 to indicate where the 95% CI estimated by k-NN and conventional estimation are equivalent.
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in that the slopes were directly interpretable as a proportional
error. The random slopes model is (imputed)ij = [(b+ bi)
observed]ij+ [ here i represents stands, j represents plots within
stands,b is a fixed effect and bi is a normally distributed stand-level
random effect. A power relationship between weights and
observed values was used to control heteroscedasticity. Signifi-
cance tests relied on a likelihood ratio test of nested models with
the base model omitting the random effects. The between-stand
variation, calculated in this way, had a standard deviation of 6
per cent of the stand mean. This was not significantly different to
zero in a statistical sense (P¼ 0.09) and could be ignored.
However, it does provide a best estimate of the potential magni-
tude of stand-level bias; one in which for 95 per cent of stands
the absolute model error would be ,12 per cent of the mean.
This is in addition to the estimated sampling error but, unlike sam-
pling error, cannot be calculated at a stand-level.

Discussion
Findings from this paper demonstrate the successful implementa-
tion of k-NN estimation as a means of integrating aerial LiDAR scan-
ning data into a forest information system. This case study used for
illustration was the first use of this approach with data of this type
in New Zealand. The results suggest that the technique can be used
to provide accurate predictions when compared with a validation
dataset derived from independent stand assessments in the
study area. Estimates of the error associated with stand level
k-NN estimates were calculated in a manner that accounted for
spatial correlation and were encouragingly small.

A variable selection algorithm was implemented and used to
select important predictor variables and discard those that are un-
important based on model prediction error. The algorithm can be
used to select the important variables from the numerous LiDAR
metrics in an unsupervised manner. It was observed that using
the variables selected by the algorithm produced better predic-
tions than predictors selected using alternative techniques. The
quality of prediction was assessed both in terms of the model per-
formance statistics and by comparing the stand-level model
outputs with stand estimates from the validation dataset.

The VSSA algorithm and random forest distance metric were
compared with more simplistic modelling approaches. This ana-
lysis revealed that using random forest for neighbour selection pro-
vided considerably lower RMSD values than Euclidean distance.
This result is consistent with previous studies (Hudak et al.,
2008a,b; Hudak et al., 2014). The reason for the greater accuracy
provided by random forest is unclear although, as noted previously
(Hudak et al., 2014), the bootstrapping nature of random forest
may be the best explanation for its effectiveness. When using the
random forest proximity metric the predictor variables selected
by VSSA produced a RMSD that was substantially (18 per cent)
lower than that produced using the 10 predictors most correlated
with TRV. A differing effect was observed when using the Euclidean
distance metric. The RMSD based on the variables selected by VSSA
was 23 percent higher than that produced using the 10 mosthighly
correlated predictors. The cause of this occurrence is unknown.
However, the predictors that were most correlated with TRV were
all height percentiles whereas other types of predictors, such as in-
tensity kurtosis and intensity percentiles, were selected by VSSA. It
is logical that the inherent flexibility in the random forest distance

metric can accommodate a more varied data structure in the
predictors.

Model validation and agreement analysis showed that the k-NN
stand estimates did not vary significantly, or systematically, from
the conventional inventories in the validation dataset. Further-
more, rasters detailing the response show detailed intra-stand dis-
tribution of stand dimensions that were previously unavailable.
This is of considerable value to forest managers for managing silvi-
cultural operations, harvest planning and matching production to
market conditions. The k-NN stand estimates varied minimally
from the conventional inventory estimates used by the forest
manager. Wherever there was a notable discrepancy between
k-NN and conventional estimates of TRV, stands were visited to in-
vestigate the cause. This revealed that several stands had experi-
enced wind damage at some time between the conventional
measurement and LiDAR acquisition date. These are visible as a
cluster of points below the diagonal line in panel a) of Figure 2.
This is an encouraging finding as it highlights the improved infor-
mation available through integrating remotely sensed data into
forest assessment.

Log-product volume estimates produced from k-NN were con-
sistent with those from the conventional stand assessments. In a
minority of cases the imputed product mix estimate for a stand dif-
fered significantly from the conventional estimate. There are
several possible causes for this and these issues would be
addressed in a production environment. Silvicultural treatments
that have an effect on log-product mix can be accounted for in
model development. These could be included in the proximity cal-
culation used to select donors. This would require accurate stand
records, and knowledge of the silvicultural treatments that affect
log-product mix. Alternatively, a statistic that serves as an index
of log-product mix (e.g. plot value) could be included as a response
during predictor variable selection. This process should result in the
selection of predictors that ensure appropriate donors are selected
for improved log-product estimates. Management differences
could be accounted for during sampling design by splitting the
area based on a silvicultural treatment that is known to result in
the production, or otherwise, of a product of interest (e.g.
pruning produces pruned saw logs). Separating the imputation in
this way would ensure that reference plots could only be selected
from stands that had received appropriate management. Chal-
lenges remain for the imputation of log-product mixes but this
study illustrates a valid proof of concept and suggests that the ap-
proach can be extended to produce log-product volume estimates
suitable for use in a commercial environment.

The sampling errors for imputed response variable estimates
were calculated using a method (McRoberts et al., 2007) that
accounts for the correlation between target pixels that share
the same reference pixel(s), and for correlation between refer-
ence pixels that are in close proximity. Analysis showed that
failing to account for these correlations would result in an under-
estimate of sampling error by 15 per cent for TRV, 12 per cent for
MTH, 19 per cent for basal area and 4 per cent for stand density.
The short range of spatial correlation observed is consistent
with the findings of previous work (McRoberts et al., 2007;
Magnussen et al., 2009). It is tempting to conclude that spatial
correlation could be ignored in a production inventory system if
plot spacing is kept �400 m. While this might in fact be the
case, it would be premature to arrive at this conclusion on the
basis of limited evidence.
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It was possible to impute values with useful and consistent pre-
cision for every stand in the study area using k-NN estimates based
on LiDAR metrics; even for stands containing no reference plots.
The sampling errors for k-NN estimates were smaller in most
cases when compared with the conventional stand assessments.
For a commercial forestry application this result is particularly en-
couraging as it indicates the potential cost savings, or precision
benefits, that incorporating LiDAR data in a k-NN framework can
offer. Precise stand estimates covering 102 stands across
4000 ha were produced using only 213 ground plots. There is no
reason to suggest that the comparable results would not be pro-
duced over a larger area, and for many more stands, if a more ex-
tensive LiDAR dataset was available. In contrast, the conventional
assessments in the validation dataset contained �440 plots and
provided stand estimates for only 29 separate stands.

The sampling error does not incorporate error due to the k-NN
model being potentially biased at the stand level for some
stands. Analysis of stands with multiple reference plots showed
that this error was small (+6 per cent) and not significantly differ-
ent to zero in this study area.

There are two challenging issues associated with calculating
and using the sampling errors for AOIs; the size of the computation
and the estimation of spatial correlation. Neither issue is insur-
mountable. Estimation of sampling error requires computation of
the interactions between each pair of target pixels and their k ref-
erence pixels in the AOI. In this study, an AOI consisting of the entire
study area contained 43 548 target pixels. With its five nearest
neighbours (k¼ 5), computation and summarization required con-
sideration of (5×43 548)2 over 50 billion values. The size of the
computational problem has two implications. Firstly, it cannot all
be fitted into computer memory at the same time so the calcula-
tions must be staged adding to its complexity. Secondly, it can
take considerable time to compute the sampling error for large
areas of interest. Three approaches suggested by McRoberts et al.
(2007), were used to reduce the size of the problem to a man-
ageable level in this study. These included sub-division of the co-
variance matrix into manageable blocks that were processed
sequentially (blocking), the use of symmetry (the upper diagonal
is the same as the lower diagonal), and sub-sampling. Blocking
and symmetry allowed for computation across the entire study
area. Sub-sampling allowed for computation across the entire
study area within the time limits that would be practical in an op-
erational context. All three methods would be required in a produc-
tion implementation involving large AOIs.

Understanding spatial correlation among the reference plots is
complex but not time-consuming. It is complex because it requires
multiple iterations of the process of fitting a semi-variogram. All of
this can be automated, and was automated for the case study. Pro-
blems arise because the spatial data tend to be noisy so fitting a
semi-variogram can fail, or worse can silently produce an implaus-
ible outcome. Failure in the context of the study required manual
inspection and/or intervention. Automating this for a production
system would require more experience with the modes of failure
and how best to deal with them. McRoberts et al. (2007) recom-
mended that reference plots are placed far enough apart that
spatial correlation can be ignored. This is sound advice but, de-
pending on the size of the study area, will not always be possible.
At a minimum, some check on whether spatial correlation can be
ignored in any specific inventory would be prudent and the neces-
sity for manual intervention should be assumed.

Conclusions

In the course of this research methods for small area estimation
using k-NN and aerial LiDAR have been refined. In particular a
review of the effect of spatial correlation between reference obser-
vations was investigated and practical methods to account for it
identified. The case study has shown that valid estimates of
stand yields, including log-product volumes, can be produced
with improved precision compared with conventional methods.
This offers forest managers a substantial potential cost saving in
avoided measurement plots.

Acknowledgements
The contribution of Susana Gonzalez Aracil is gratefully acknowledged for
assistance with LiDAR processing. The diligent and professional contribution
of all field teams involved is also acknowledged by the authors. Mike Watt
and Ruth Falshaw of Scion Research are acknowledged for providing
extremely useful reviews of an early draft of this document. Mark Ducey
and the two anonymous reviewers provided useful comments that have
improved the quality of this work.

Conflict of interest statement
None declared.

Funding
Funding for this research was provided by Future Forests Research Ltd.
and Timberlands Ltd. The research providers were Interpine Forestry Ltd.,
Silmetra Ltd. and Scion Research.

References
Bland, J.M. and Altman, D.G. 1986 Statistical methods for assessing
agreement between two methods of clinical measurement. Lancet 1,
307–310.

Breiman, L. 2001 Random forests. Mach. Learn. 45, 5–32.

Crookston, N.L. and Finley, A.O. 2008 yaImpute: an R package for kNN
imputation. J. Stat. Software 23, 1–16.

Dalponte, M., Bruzzone, L. and Gianelle, D. 2008 Estimation of tree biomass
volume in Alpine forest areas using multireturn LIDAR data and support
vector regression. In Proceedings of SPIE - The international Society for
Optical Engineering, vol 7109. Image and Signal Processing for Remote
Sensing XIV, Cardiff, Wales.

Falkowski, M.J., Hudak, A.T., Crookston, N.L., Gessler, P.E., Uebler, E.H. and
Smith, A.M.S. 2010 Landscape-scale parameterization of a tree-level
forest growth model: a k-nearest neighbor imputation approach
incorporating LiDAR data. Can. J. For. Res. 40, 184–199.

Hudak, A.T., Crookston, N.L., Evans, J.S., Hall, D.E. and Falkowski, M.J. 2008a
Nearest neighbor imputation of species-level, plot-scale forest structure
attributes from LiDAR data. Remote Sens. Environ. 112, 2232–2245.

Hudak, A.T., Evans, J.S., Crookston, N.L., Falkowski, M.J., Stiegers, B.K., Taylor,
R. et al. 2008b Aggregating pixel-level basal area predictions derived from
LiDAR to industrial forest stands in North-Central Idaho. US Forest Service.
Idaho, USA.

Hudak, A.T., Tod Haren, A., Crookston, N.L., Liebermann, R.J. and Ohmann,
J.L. 2014 Imputing forest structure attributes from stand inventory and
remotely sensed data in western Oregon, USA. For. Sci. 60, 253–269.

Forestry

246

D
ow

nloaded from
 https://academ

ic.oup.com
/forestry/article/88/2/237/566604 by guest on 24 July 2022



Kirkpatrick, S., Gelatt, C.D. Jr. and Vecchi, M.P. 1983 Optimization by
simulated annealing. Science 220, 671–680.

Laamanen, R. and Kangas, A. 2011 Large-scale forest owner’s information
needs in operational planning of timber harvesting - some practical
views in Metsähallitus, Finnish state-owned enterprise. Silva Fenn. 45,
711–727.

Latifi, H. and Koch, B. 2012 Evaluation of most similar neighbour and
random forest methods for imputing forest inventory variables using data
from target and auxiliary stands. Int. J. Remote Sens. 33, 6668–6694.

Liaw, A. and Wiener, M. 2012 Breiman and Cutler’s random forests for
classification and regression 4.6–7 Ed.

Rawley, B. 2011 YTGen. 2.9.8.4 Ed.

Maclean, G.A. and Krabill, W.B. 1986 Gross-merchantable timber volume
estimation using an airborne lidar system. Can. J. Remote Sens. 12,
7–18.

Magnussen, S. 2013 An assessment of three variance estimators for the
k-nearest neighbour technique. Silva Fenn. 47, 1–19.

Magnussen, S. and Tomppo, E. 2014 The k-nearest neighbor technique with
local linear regression. Scand. J. For. Res. 29, 120–131.

Magnussen, S., McRoberts, R.E. and Tomppo, E.O. 2009 Model-based mean
square error estimators for k-nearest neighbour predictions and
applications using remotely sensed data for forest inventories. Remote
Sens. Environ. 113, 476–488.

McGaughey, R.J. 2013 FUSION/LDV: Software for LiDAR data analysis and
visualisation. 3.30 Ed., United States Department of Agriculture.

McRoberts, R.E. 2012 Estimating forest attribute parameters for small areas
using nearest neighbors techniques. For. Ecol. Manage. 272, 3–12.

McRoberts, R.E., Tomppo, E.O., Finley, A.O. and Heikkinen, J. 2007 Estimating
areal means and variances of forest attributes using the k-Nearest Neighbors
technique and satellite imagery. Remote Sens. Environ. 111, 466–480.

McRoberts, R.E., Næsset, E. and Gobakken, T. 2013 Inference for
lidar-assisted estimation of forest growing stock volume. Remote Sens.
Environ. 128, 268–275.

Moeur, M. and Stage, A. 1995 Most similar neighbour: an improved sampling
inference procedure for natural resource planning. For. Sci. 41, 337–359.

Næsset, E. 1997 Estimating timber volume of forest stands using airborne
laser scanner data. Remote Sens. Environ. 61, 246–253.

NZFOA. 2013 New Zealand Plantation Forest Industry facts and figures.
N.Z.F.O. Association (ed.), .

Packalén, P., Temesgen, H. and Maltamo, M. 2012 Variable selection
strategies for nearest neighbor imputation methods used in remote
sensing based forest inventory. Stratégies de sélection de variables le plus
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