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Abstract: Exotic conifers can provide significant ecosystem services, but in some environments,
they have become invasive and threaten indigenous ecosystems. In New Zealand, this phenomenon
is of considerable concern as the area occupied by invasive exotic trees is large and increasing rapidly.
Remote sensing methods offer a potential means of identifying and monitoring land infested by these
trees, enabling managers to efficiently allocate resources for their control. In this study, we sought to
develop methods for remote detection of exotic invasive trees, namely Pinus sylvestris and P. ponderosa.
Critically, the study aimed to detect these species prior to the onset of maturity and coning as this
is important for preventing further spread. In the study environment in New Zealand’s South
Island, these species reach maturity and begin bearing cones at a young age. As such, detection of
these smaller individuals requires specialist methods and very high-resolution remote sensing
data. We examined the efficacy of classifiers developed using two machine learning algorithms
with multispectral and laser scanning data collected from two platforms—manned aircraft and
unmanned aerial vehicles (UAV). The study focused on a localized conifer invasion originating from
a multi-species pine shelter belt in a grassland environment. This environment provided a useful
means of defining the detection thresholds of the methods and technologies employed. An extensive
field dataset including over 17,000 trees (height range = 1 cm to 476 cm) was used as an independent
validation dataset for the detection methods developed. We found that data from both platforms
and using both logistic regression and random forests for classification provided highly accurate
(kappa < 0.996) detection of invasive conifers. Our analysis showed that the data from both UAV and
manned aircraft was useful for detecting trees down to 1 m in height and therefore shorter than 99.3%
of the coning individuals in the study dataset. We also explored the relative contribution of both
multispectral and airborne laser scanning (ALS) data in the detection of invasive trees through fitting
classification models with different combinations of predictors and found that the most useful models
included data from both sensors. However, the combination of ALS and multispectral data did not
significantly improve classification accuracy. We believe that this was due to the simplistic vegetation
and terrain structure in the study site that resulted in uncomplicated separability of invasive conifers
from other vegetation. This study provides valuable new knowledge of the efficacy of detecting
invasive conifers prior to the onset of coning using high-resolution data from UAV and manned
aircraft. This will be an important tool in managing the spread of these important invasive plants.
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1. Introduction

Conifers are among the most economically important tree species on Earth, forming the basis
of major forest industries and contributing substantially to the global annual timber yield [1].
Exotic conifer plantations form the cornerstone of the plantation forestry sector in many Southern
hemisphere countries. These forests provide significant economic [2,3], social [4], and ecological
benefits [5,6] and contribute significantly to global carbon sequestration [7,8]. Furthermore, these forests
are critical in supplying the increasing fiber demands of the Earth’s growing population [9]. The values
provided by plantation forests in many countries are widely recognized, but when planted in
inappropriate areas, this valuable land use can have deleterious effects at a local scale. Many conifer
species have evolved to exploit a variety of ecological niches which makes them highly suited as
fast-growing plantation species. Unfortunately, the same traits also make them highly invasive in some
environments [1] as they may out-compete indigenous vegetation. The prevalence of invasions by
non-native invasive plants has considerable consequences in many environments and is a significant,
and increasingly common, challenge for land managers [10,11]. This is particularly true in mountainous
areas where increasing levels of anthropogenic disturbance coupled with a changing climate are
expected to trigger an increase in the abundance of invasive plants, and upward expansion of exotic
invasive species in vulnerable mountainous regions [12]. Historically, trees did not feature prominently
in global lists of important invasive plants [10], but more recently the invasive and unfavorable nature
of many tree species has been recognized [13–15]. Now, many tree species are included in databases of
the most widespread and damaging plants [14].

In New Zealand, a few conifer species constitute the vast majority of the plantation forestry
industry contributing significantly to the country’s economic and social well-being. The forestry sector
contributes almost NZ$ 5 billion in export earnings to the economy per year and directly employs some
18,000 people [16]. Despite these benefits, several exotic conifer species have become invasive and are
invading natural, and semi-natural, grass and scrubland habitats [17]. These invasions have ecological,
economic, and cultural implications within many ecosystems [18]. Exotic conifers have invaded large
areas in both North and South Islands primarily in grassland and shrubland areas [19,20]. The area
affected by invasive conifers is estimated to be 1,700,000 ha, an area approximately equivalent to the
national plantation estate, and this area is thought to be increasing at 5–6% per year [21].

The negative implications of this infestation are considerable, and to control, or at least slow,
their spread, detection and eradication methods are required. A range of chemical and physical
control methods are available, but to be effective these require accurate detection methods so that
they can be targeted efficiently. For control efforts, identifying juvenile trees before they reach
maturity is of considerable importance to prevent further spread. This complicates detection solutions
because the ease of detection is dependent on the density of the infestation, size of the individuals
present [22], and the complexity of the terrain and vegetation structure in the area of interest [23].
In New Zealand, current surveillance and monitoring methods rely on manual conifer detection across
larger areas using helicopter-based surveys by skilled operators [24], ground surveys in very small
areas, or combinations of both [25]. Detection success using current approaches is highly variable,
and detailed surveillance across national or regional scales is not feasible due to high costs and resource
limitations. The information void caused by a lack of an effective method for detection of invasive
conifers is a major hindrance to the development of effective control procedures.

Remote sensing potentially provides a means for accurate invasive conifer detection over large
areas with varied terrain and vegetation types. Automated and semi-automated techniques have been
widely used to detect and monitor invasive plants in numerous environments [26–29]. However,
research into the detection and monitoring of invasive conifers is limited. Recent research has
developed a method for invasive conifer detection by classifying airborne laser scanning (ALS) returns
from invasive conifers by combining ALS data with aerial imagery [22]. However, these methods have
only been tested in a single vulnerable habitat type and for detection of mature trees. Further research
is required to test methods in other settings using data from alternative platforms, and to extend the
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methods to juvenile trees. High-resolution aerial imagery has recently been used to accurately classify
invasive plants including mature conifers in Chile [30] and New Zealand [31]. However, no research
has addressed the issue of identifying invasive trees prior to, or immediately after, the onset of coning
when the spread may be controlled more efficiently. Other relevant research comes from the boundary
of the boreal and Arctic ecotones [32–37] where there is considerable interest in monitoring changes
in the tree line that are associated with climate change. However, there are considerable differences
in environmental conditions between Scandinavia and New Zealand and so specialized techniques
must be developed in both areas. In particular, the Scandinavian research frequently targets detection
of all trees in the area of interest as the presence of any trees represents a shift in vegetation type.
This is unsuitable in New Zealand as detection techniques must differentiate invasive conifers from
non-target trees and shrubs in many environments.

A range of active and passive remote sensing technologies have been shown to be useful for the
detection and monitoring of invasive exotic, or pioneer, trees in studies around the world. These studies
include the use of ALS data either alone [36] or in combination with spectral data [22,33,38,39]. The use
of passive remote airborne or space-borne sensors for monitoring plant invasions is much more
common [29,40–43]. The efficacy of these approaches is dependent on the selection of the appropriate
sensor and platform that can provide imagery at the appropriate spatial, spectral, and temporal
resolution to separate the target plant species from its surroundings. Data fusion refers to the
integration of remotely sensed datasets to provide insight into the properties of target objects. In a
forest description context, these fused datasets frequently have greater predictive power than their
constituents [44]. Several studies have employed data fusion for detection and monitoring of invasive
plants to enhance the separability of the target organism in its environment. Combining the structural
information from ALS data with spectral data from hyperspectral or multispectral imagery has
proved to be particularly useful for differentiating target organisms from non-target objects [22,45–47].
The constituent datasets can either be sourced from the same or separate platforms depending on the
study design.

The resolution of imagery used for invasive plant detection ranges from low spatial resolution
datasets such as MODIS [48] which have limited utility for invasive plant detection to studies using
ultra-high-resolution imagery collected from unmanned aerial vehicles (UAV)s [49–52]. A range of
satellite products have been used in studies monitoring exotic plant invasions. These range from
studies using moderate resolution sensors such as Landsat (spatial resolution = 30 m) [53–55], to higher
spatial resolution sensors such as WorldView 2 (spatial resolution = 0.5 m) [56] and Pleaides 1A
(spatial resolution = 0.5 m) [57,58]. Higher resolution imagery collected from conventional manned
aircraft has been widely used for invasive plant detection. These studies include a range of sensors
including multispectral [59–61] and hyperspectral imagery [62–68] but none of these studies have
focused on small juvenile plants.

In more recent years, the emergence of ultra-high-resolution data collected from UAVs, and their
application to forest monitoring [69,70], has allowed the spatial resolution and threshold size of
targeted invasive plants to be reduced. This potentially enables the detection and monitoring of
earlier invasion stages and smaller plants to be detected. These platforms and associated miniaturized
sensors have also significantly reduced the cost and improved the flexibility of acquisition of detailed
remotely sensed data [71]. Studies using UAVs for detection of invasive plants have emerged in recent
years from Africa [51], North America [50,72], South America [30,73], and Europe [52,74–76] with
encouraging initial results.

The earliest UAV-based studies were undertaken in an agricultural setting and made use
of computer vision to identify weeds [77]. Significant knowledge gaps remain, and further
methodological research is required to develop the promise of these early studies as technical
constraints are increasingly cited as a major factor limiting the success of remote sensing assisted
invasive plant management [78]. Furthermore, no studies have sought to develop UAVs specifically
as a tool for the early detection of plant invasions [79], and this capability is critical to assist with the
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eradication of invasive conifers from protected areas. Despite the significant body of research into the
detection and monitoring of invasive plants, we are unaware of any studies that focus on detection of
invasive trees during the juvenile phase of development either before or immediately after the onset
of reproductive maturity. This is critically important and represents a significant challenge as coning
can occur very early for some species in many environments, meaning that target objects can be very
small. Furthermore, no research has directly compared the efficacy of combinations of spectral and
ALS datasets obtained from UAV (UAV-LS) and manned airborne platforms.

In this research, we seek to define the detection threshold and to characterize errors for invasive
tree detection in a relatively simplistic grass and shrubland setting. We also examine the efficacy of
two different classification approaches in this context and compare the predictive power of combined
datasets, containing information from both multispectral and laser scanning, with data provided by
single sensors.

2. Materials and Methods

A schematic diagram illustrating the methods used in this paper is included below (Figure 1).
Briefly, two sets of remotely sensed data collected from a UAV and manned aircraft platform were
used alongside a manually digitized training data set defined in a Geographical Information System
(GIS) to fit supervised classification models using either random forests (RF) or logistic regression (LR).
For each classifier a total of 11 models were generated using UAV data and 9 models were constructed
using manned aircraft data, as the latter have one less band than the UAV data, using a combination of
spectral, ALS data, and a combination of both data sources (Table 1). Using this approach, a total of
40 models were created. A k-fold cross-validation [77,80,81] was used to assess model precision based
on the accuracy statistics described below.

Table 1. Summary of the all models developed for selection of the best performing model of each class
with model performance assessed based on cross-validation statistics from the model fitting dataset.

Model ID Features Model Class

1 Blue, Green, Red, Near-infrared, CHM height Spectral + ALS
2 Blue, Green, Red, Red edge, Near-infrared, CHM height Spectral + ALS
3 CHM height ALS
4 Blue, Green, Red, Red edge, Near-infrared Spectral
5 Blue, Green, Red, Near-infrared Spectral
6 Blue, Green, Red, Spectral
7 Red Spectral
8 Green Spectral
9 Blue Spectral
10 Near-infrared Spectral
11 Red Edge Spectral

The best performing models were then selected from 12 categories that included the factorial
combination of the two platforms, two classifiers and three classes of data (spectral, ALS, spectral and
ALS). These 12 models were then used to make predictions about the presence or absence of invasive
exotic conifers across the area of interest. These surfaces were then intersected with a completely
independent validation dataset sampled from an extensive field data collected within the area of
interest to calculate error statistics and to investigate the relationship between detection accuracy and
tree size.

2.1. Study Site

The study site is in the Mackenzie Basin, South Canterbury, South Island of New Zealand.
Topographically the area was strongly influenced by its glacial history with in-filled and now wide
expanding river terraces and glacially formed rounded hills surrounded by high altitude mountain
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ranges. The Mackenzie Basin lies between 600–1100 m above sea level (a.s.l.) with higher slopes and
hilltops also present near Lake Pukaki. The climate can be characterized as continental with dry hot
summers and cold winters. The area has been dominated by native (and more recently a growing
proportion of exotic) grassland species for at least the last 500 years and has been subjected to 200 years
of pastoral management of varying intensities. This management combined with frequent burning,
overgrazing, and incursions of rabbit outbreaks has resulted in a high level of degradation of the
natural short and tall tussock grasslands and herb and shrub communities.
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Figure 1. A schematic overview of the methodology used in this research.

In this area, sources for exotic conifers have been historic plantings of shelter belts and woodlots
for soil conservation, shelter, scenic, and recreational purposes across the basin. Some commercial
plantings were also established over time to create a timber resource. Exotic conifer species originating
from these plantings have now become invasive over thousands of hectares and the initial low
densities of scattered trees are now expanding to become grassy woodlands, and even dense forested
stands in some areas. The major species that have spread across most of the basin and have been
controlled, but not eradicated, include Pinus contorta Douglas, Pinus nigra Arnold, Pinus sylvestris L.,
Pinus ponderosa Douglas, Larix decidua Mill., and Pseudotsuga menziesii (Mirb.) Franco.

The core study area used to develop and test detection methods encompassed 22.4 ha in the
immediate vicinity of a shelter belt planted with a mixture of P. sylvestris, P. ponderosa and a small
number of P. nigra. The study site is 804 m asl and is located around 11 km west of the township
of Lake Tekapo (Latitude = 43◦ 59′ 02.2985 S, Longitude = 170◦ 20′ 22.43 E) (Figure 2). This site was
selected because it represented a first-order invasion event of significantly problematic invasive conifer
species within this region and provided a suitable testing ground for method development. The flat
to rolling terrain of the study site represents mostly short tussock grassland, the common vegetation
type in the lower parts of the Mackenzie Basin. Most common native and exotic grasses are short
stature tussock species and exotic grasses such as. Shrubs are mostly in the prostrate growth form,
are also present and distributed sporadically throughout the area. The herbaceous component of the
vegetation is dominated by exotic Hieracium species.

2.2. Field Data

Field data were collected at the study site during an extended field campaign between
15th November 2017 and 10th December 2018. The field campaign was interrupted several times
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by adverse weather events. The objective of the field survey was to provide a total census of a
first-order invasion event from a P. sylvestris and P. ponderosa shelter belt in an open grassland
environment. Aerial imagery was used to manually identify the approximate spread fan of the
invasion front. This was used to define the boundary for an on-ground comprehensive search of the
study area. Excluding the shelter belt all exotic conifers in the area of interest were identified down
to a minimum tree height of 0.05 m. The location of each individual was recorded using a Trimble
Geo 7X GNSS receiver. At least 100 epochs were recorded for each individual and points were then
post processed using a local base station network maintained by Land Information New Zealand
(LINZ). In addition to the tree location, detailed information on the properties of each tree were
measured. Total tree height was measured using a height pole and crown width was estimated
based on two perpendicular tape measurements including the widest point of the crown. In addition
to the species, coning (present/absent), and health status (alive/dead) of all trees was recorded.
The age of a subset of trees was estimated using the number of branch whorls and the ground cover
(bare ground/tussock/exotic grass cover) in which younger trees have established (<1 m ht) was
recorded. This field data collection was used to provide ground-truth data suitable for developing and
validating methods for tree detection of all exotic conifers in the area of interest based on the remotely
sensed data available.

Figure 2. (a)The location of the Mackenzie Basin within New Zealand, outlined in red over a shaded
relief map, (b) an overview of the site, (c) a close up of the UAV imagery used in the study, (d) a close
up of the manned aircraft imagery used in the study, (e) a part of the UAV-LS point cloud, and (f) a
part of the ALS point cloud collected from the manned aircraft.
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2.3. Remotely Sensed Data

Remotely sensed data were collected from the study site using both UAV and manned platforms.
Wall to wall coverage of point clouds derived from laser scanning and orthomoasics of multispectral
imagery was acquired from both platforms for the study area.

2.3.1. Manned Aircraft Data

Both imagery and ALS data were collected simultaneously on 29th January 2018. Imagery was
collected using a Leica RCD30 camera with an 80 mm lens (Field of view 60◦) and laser scanning was
carried out using a Leica ALS60 scanning system. Data were collected from onboard a Remi Cessna
337 Skymaster across the study site at a flying height of 800 m above ground level. The cruise speed
was 120 knots and terrain following was undertaken manually by the pilot. The resultant imagery
had a ground sampling distance (GSD) of 4 cm. The 80 MP medium format camera used provided
high-resolution four band multispectral imagery with radiance recorded in the blue (450–485 nm),
green (500–565 nm), red (625–680 nm), and near-infrared (780–880 nm) bands. The laser scanning
system was capable of recording up to 5 returns per pulse. Data were collected with a pulse repetition
frequency of 120 kHz and a mean swath overlap of 45% which resulted in a point cloud dataset with a
mean point density of 8.28 pts/m2 (standard deviation = 1.81 pts/m2) and a mean ground spacing
of 0.35 m (Table 2). A series of ground control points were established by the provider and used
to orthorectify both the aerial imagery and the point cloud data. This resulted in a mean reported
accuracy of 0.1 m in both the horizontal and the vertical dimensions with a 90% confidence interval.

Initial point cloud processing was carried out using the Terrasolid software (Terrasolid Oy, Espoo,
Finland). This included tiling, classification of noise points, and ground classification. Subsequent
processing was carried out in the LAStools software suite or and the lidR package [82] within the R
statistical software package [83].

2.3.2. UAV Data

UAV laser scanning data were acquired on the 6th May 2018 using a Velodyne HDL-32E
(Velodyne, San Jose, CA, USA) scanner embedded in a RouteScene ‘LidarPod’ laser scanning system
(Mapix Technologies Ltd., Edinburgh, UK). The laser scanner was mounted on a DJI Matrice 600
piloted octocopter platform (DJI Ltd., Shenzen, China), in total 9 flights were required to cover the
entire study area. The Velodyne HDL-32E laser scanner has a rotating array of 32 lasers, providing a
maximum potential ‘scan angle’ of 180 degrees from the Routescene system. Only the inner lasers
are equiangular and returns acquired with a high off-nadir angle can induce substantial artefacts and
noise in the point cloud data when acquired from a UAV. To minimize these effects, only data from the
inner-most lasers (± 8 degrees off nadir) were retained and a sector reduction filter was applied to
limit the effective scan angle to ±25 degrees. Flight line matching, ground classification, noise removal
and the identification of overlap points were carried out in Terrasolid. Subsequently, points classified
as overlap were removed to ensure a more even density over the entire study area. A flying altitude of
approximately 60 m above the local terrain and a flight speed of 6 m per second was used. The flight
plan ensured that there was significant side overlap to remove the possibility of data voids. All flight
maneuvers and altitude adjustments were made outside of the area of interest to avoid the possibility
of flight artefacts in the dataset. The laser scanner was only capable of recording a single return and
produced a pulse density of 121 pls/m2 and a mean ground pulse spacing of 0.09 m (Table 2).

Multispectral imagery was acquired on the 9th May 2018 from the same UAV in a separate
campaign that included 4 flights. A Sentera Multispectral Double 4K camera (Sentera, Minneapolis,
MN, USA) was used for UAV-borne multispectral data collection. This sensor provides imagery in the
blue (416–476 nm), green (525–570 nm), red (615–695 nm), red edge (700–740 nm), and near-infrared
(830–850 nm). Imagery was captured from an altitude of 80 m agl and flight settings ensured a front
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and side overlap of 70% and 80% respectively. The resulting geo-referenced mosaic dataset had a GSD
of 2.5 cm.

Table 2. Summary of the ALS and UAV-LS datasets used in this analysis.

Platform Sensor Point Density Point Spacing Altitude (m) Returns

UAV Velodyne HDL32e 121 0.09 60 1
Manned Leica ALS60 8.28 0.35 800 5

2.3.3. Data Processing

The UAV-LS and ALS datasets used to generate canopy height models (CHM) covering the study
area. Several approaches to CHM generation were trialed and were assessed visually to identify the
dataset that contained the most accurate representation of the conifer invasion spread. A CHM was
generated from both datasets and was used to produce rasters characterizing vegetation height across
the study area. The CHM resolution was chosen to reflect the approximate footprint size of each
dataset (UAV-LS = 0.1 m, ALS = 0.3 m).

The CHM rasters were co-registered with the multispectral imagery using features that could be
manually identified in both the CHM and in the imagery using the geo-rectification tool in the ArcGIS
software suite (Esri, Redlands, USA). Using the manually identified tie points, rectification was carried
out using a first-order polynomial (affine) transformation to shift, scale, and rotate the raster datasets.
The resulting RMSE was 42 and 35 cm for the manned aircraft and UAV imagery respectively using
the 40 link tie points identified independently for each set of rasters. The CHM rasters were resampled
to the same resolution as the respective multispectral imagery collected from each platform using the
gdalwarp function of the Geospatial Data Abstraction Library [84] (GDAL version 2.2.4).

2.4. Supervised Classification

Supervised pixel-based classification was used to develop models for detection of invasive
conifers. A training dataset was produced through careful digitization of 50 conifer canopies
within a GIS and 50 areas of background vegetation. Areas that were very heavily shaded were
excluded from the training dataset as this has been shown to improve classification results using
UAV imagery [30]. The spatial data were exported from the GIS and loaded into R [83] where they
were used to extract classified pixels coincident with the selected areas. Therefore, a training dataset
containing 2,057,915 pixels including ground-truth labels indicting conifer/background and spectral
data and CHM elevation data derived from the ALS or UAV-LS as the candidate predictive variables.
The statistical learning method RF [85] and LR method using a generalized linear model (GLM) were
used. For the RF algorithm, model training was carried out using the Caret package [86] using ten-fold
cross-validation with three repeats. Classifiers were developed using the R packages ranger [87] for
RF, and glm [83] for LR. In total, 42 models were developed; these included either spectral data only,
spectral data and ALS, or ALS data only and separate models were developed for each platform and
model class (RF or LR). The best models of each class for each platform and model type were identified,
using the validation statistics calculated for accuracy assessment. These classifiers were used to predict
the presence of invasive across the study site.

2.5. Accuracy Assessment

The predictions from the best performing model of each class identified in Table 1 were used
for independent validation of model accuracy. An independent validation dataset was generated
using stratified random sampling of individual conifers from the field data. Stratification was based
on tree height, using classes with 0.25 m increments, with the intention of ensuring that trees of all
sizes were included in the validation dataset. It was intended that this would provide insight into the
relationship between tree size and classifier performance. Ten individuals were randomly selected
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from within each stratum. Once identified, the canopies of the invasive conifers in the validation
dataset were represented as circular cross-sectional areas—with the diameter of each extracted from
the field measured canopy widths. The cross-sectional canopy areas were used to extract pixels from
the classification results from the selected models that were coincident with the field measured tree
canopies. The mode of the classified pixels within a field measured tree canopy was used to define the
overall classification value for a subject tree and statistics were calculated at the tree level. The sampling
process was iterated five times to allow the sample to stabilize and reduce the possibility of sample
artefacts affecting the interpretation of the results. The independent validation dataset was completed
by randomly selecting 800 m2 square areas of the surrounding land that the field data and imagery
indicated were free from invasive conifers.

Accuracy statistics were calculated and used during both the model selection and independent
validation. The accuracy of the supervised classification model was assessed through a repeated
cross-validation of the training dataset with five folds and ten repeats. Simple accuracy, Cohen’s Kappa
statistics [88], area under the receiver operator curve (AUC), and F measure based on the
cross-validation were calculated and used to assess classification accuracy. Similarly, these statistics
were also calculated at the individual tree level during the independent validation exercise.
Furthermore, the sensitivity and specificity of each classification model was calculated to provide
further insight into classifier performance. Sensitivity was calculated as the count of true positive
classifications divided by the sum of true positives and false negatives. Specificity was calculated as
the count of true negatives divided by the sum of true negatives and false positives [86].

3. Results

3.1. Field Data

In total 17,514 invasive conifers were identified and measured in the study site during the field
campaign. Of this sample, 99% were either P. sylvestris (60%) or P. ponderosa (39%), these being the
two species that comprise the shelterbelt in the study area. A small minority (3.55%) of the trees
were observed to be dead at the time of assessment and these were removed from the subsequent
independent validation. The field data showed that the P. sylvestris trees within the study area were
markedly taller and had larger crowns than the P. ponderosa (Table 3). Following differential correction,
the mean reported precision of the field recorded tree locations was 0.08 m. This level of accuracy is
considerably smaller than the crown width of the majority subject trees and should not significantly
affect the results reported here. Plotting the tree locations showed that the two species were not
uniformly intermingled but exhibited species clustering probably associated with the availability of
seed source, timing of seed release, and local soil and terrain conditions. Only the P. sylvestris was found
to be coning in the field dataset (Figure 3b). In total, 657 trees were found to be coning. These trees
had an average height of 2.43 m and an average crown diameter of 1.58 m. Notably, the smallest tree
found to be coning was only 0.84 m tall (crown diameter of 0.37 m) (Figure 3). However, in total, only 5
coning trees (0.07%) were found to be under 1 m tall.

Table 3. Summary of the field data collected and used in the independent validation dataset. Values in
brackets show the range of the measured tree heights and crown widths.

Species n Mean Height (cm) Mean Crown Width (cm)

P. ponderosa 6621 40.90 (2–369) 46.59 (1–228)
P. sylvestris 10,032 95.76 (1–476) 102.60 (1–325)

In addition to the spatial distribution and species composition, the size of the trees and the density
of the invasion are also of critical importance. The interaction of density with tree size affects both the
difficulty of detection and the strategy that might be deployed for control and eradication. Based on
the field dataset the density of invasive conifers across the study site was calculated (Figure 3). This
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analysis revealed that the density of invasive conifers was highest closest to the shelter belt and
decreased further away from where only small groups or individuals were present.

Figure 3. (a) A hexplot showing the spatial distribution and density of invasive conifers in the field
dataset, (b) a violin and box plot showing the height distribution of non-coning (n) and coning (y)
trees in the field dataset, and (c) the relationship between height and crown width for P. ponderosa and
P. sylvestris.

3.2. Training Data

Two separate datasets were produced for training the supervised classifiers from the remotely
sensed data. Graphical analysis of the training datasets provided insight into their properties (Figure 4).
This analysis showed that there were significant differences between datasets acquired from the UAV
and manned aircraft. It was particularly evident that the tussock areas in the manned aircraft training
data were considerably brighter than their equivalent areas in the UAV training dataset. This is likely
due to differences between sensors and variation in the atmospheric and solar conditions in between
the two acquisitions. As a result of this, the invasive conifer pixels were considerably more distinct
from their surroundings in the manned aircraft data than in the UAV imagery data in terms of the
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spectral bands available. However, it is clear from Figure 4 that there was a substantial difference in
the values in the red edge band between areas containing invasive conifers and those that did not.

For both datasets, the structural properties of the invasive conifers varied greatly from their
surroundings as the elevation of returns originating in the invasive conifers was usually considerably
greater than zero (Figure 4). The median and upper quartile of the elevation of returns from invasive
conifers were very similar in datasets from both platforms. The lower quartile of the elevation
distribution was considerably lower for the manned aircraft dataset than for the UAV data.

Figure 4. Box and whisker plots of the spectral and structural properties of the training dataset for the
manned aircraft (Plane) and UAV datasets.

3.3. Model Development

The classification accuracy results extracted from the cross-validation process during model
development and model selection are shown in Table 4 and Figure 5. Models developed using ALS and
all spectral data (models 1 and 2), all available spectral data (models 4 and 5), or only ALS (model 3)
were exceptionally accurate and had kappa values greater than 0.96 for all four combinations of
classifier and platform (Figure 5). Similarly, there was very little difference between the classifiers and
platform using models with four combinations of spectral bands and these two models (models 4, 5)
had very high kappa values (>0.996) that were very similar to the first three models. The models
developed with red, green, and blue bands (model 6) were very accurate but the classification accuracy
was slightly higher for these models using data derived from the UAV (mean kappa = 0.990) than the
data from the manned aircraft (mean kappa = 0.942).

Using data from the manned aircraft, the accuracy of the models that used only a single spectral
band (models 7–11) were very similar between the two classifiers (Figure 6). Mean kappa values for
these models were respectively, 0.628, 0.617 and 0.406 for models with red, green, and blue bands.
For both classifiers the model with the near-infrared band was the least accurate, but classification
accuracy for this model was higher for the RF model (kappa = 0.366) than for the model created using
LR (kappa = 0.202). The red edge band was only available using UAV-borne sensor and was more
accurate (kappa = 0.732) for the LR than for the RF model (kappa = 0.272).

In contrast to the data from the manned aircraft, classification accuracy for single band models
developed from the UAV were, with the exception of the model with the near infra-red band,
markedly lower (Figure 5). LR generally outperformed RF with these single band models (Figure 5).
Kappa values for this classifier were respectively 0.637, 0.794, 0.403 and 0.202 for models 6–10,
which included the single respective bands of red, green, blue, and NIR bands.
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Based on these results, the best performing models for each class (spectral + ALS, spectral,
and ALS) were identified and used in subsequent independent validation of classifier performance
and mapping of invasive exotic conifers across the study site. The best performing models of the
spectral + ALS class and the spectral class contained all available spectral predictors (R, G, B, NIR for
the manned aircraft and R, G, B, NIR, and red edge for the UAV).

Figure 5. Kappa values extracted from the cross-validation results during model development.
Each datum represents the kappa value from cross-validation for a single model. The model identifiers
as shown in Table 1 are shown along the X axis and shape of each datum represents the class of model
represented. Please note that models 2 and 11 could only be developed using UAV data as these
included the red edge band.

3.4. Independent Validation

Rasters detailing the pixel-wise predictions from the best performing model for each model type
were generated for the study area (Table 4). Only the best performing models of each class were used
for the independent validation (Table 4). The independent validation showed that overall the three
best performing models used the UAV data for classification. The best performing model was a LR
model using all available spectral predictors (kappa = 0.709), followed by a RF model using the same
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spectral predictors (kappa = 0.633), and the RF model using both spectral and UAV-LS predictors
(kappa = 0.623). The worst performing models overall were spectral class models developed using the
data from the manned aircraft (RF kappa = 0.478, LR kappa = 0.465) followed by the models produced
using the UAV-LS data. By contrast, the models developed using ALS data collected from a manned
aircraft were the best performing models produced using data from this platform. The specificity for
all classifiers was higher than the sensitivity. This is evidence that there were very few false negatives
in the independent validation dataset but that a significant number of trees within the validation
dataset were incorrectly classified (false negatives).

Table 4. Summary of the independent validation of model predictions. Model identifiers (Model ID)
are as specified in Table 1.

Model ID Platform Class Classifier Kappa Sensitivity Specificity

5 Manned aircraft Spectral RF 0.4646 0.739 0.906
1 Manned aircraft Spectral + ALS RF 0.6023 0.802 0.994
3 Manned aircraft ALS RF 0.6086 0.803 1
5 Manned aircraft Spectral LR 0.4777 0.749 0.906
1 Manned aircraft Spectral + ALS LR 0.569 0.781 0.988
3 Manned aircraft ALS LR 0.6091 0.804 1
4 UAV Spectral RF 0.633 0.819 1
2 UAV Spectral + UAV-LS RF 0.6225 0.815 1
3 UAV UAV-LS RF 0.5044 0.778 1
4 UAV Spectral LR 0.7089 0.865 1
2 UAV Spectral + UAV-LS LR 0.6073 0.802 1
3 UAV UAV-LS LR 0.4898 0.716 1

Figure 6. Agreement values for the independent validation dataset for trees within each height class.
Each datum shows the mean of the agreement value for both the combined RF and LR models.

Sampling the field dataset as described above provided insight into the relationship between
tree size and classification accuracy. This is important to define whether trees can be identified with
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a high degree of accuracy prior to the onset of coning in this environment. Plotting the agreement
between observed and predicted values for the validation dataset (Figure 6) revealed that the pattern
of detection accuracy was similar for both aerial platforms examined. The accuracy of classifiers from
both platforms was low for the smallest trees studied (<0.25 m) with agreement between observed and
predicted below 20%. As tree height increased, the agreement increased rapidly with both platforms
approaching 90% agreement for trees 1 m tall. Above this height threshold, detection accuracy reached
a 100% agreement between observed and predicted values for the remainder of the validation data.
The gradient of the increase in agreement in Figure 6 provides insight into the relative performance
of models with different sets of predictors. For classifiers based on data collected from the manned
aircraft there was very little difference in the validation curves for the two classifiers examined,
indicating that the specificity of these models was similar within a tree size class. By contrast, there was
some differentiation in detection accuracy for the different models developed from the UAV data.
The classifier developed using only UAV laser scanning was the worst performing model and the
classifier did not reach 100% agreement between observed and predicted until trees with a height of
2 m were used for validation. The models developed with the UAV spectral data showed a steeper
validation curve and approached almost perfect agreement when the trees in the validation dataset
were 1 m tall.

4. Discussions

The results of this study clearly show that remotely sensed data collected from both a manned
aircraft and a UAV platform can accurately detect invasive exotic conifers in a study site that was
dominated by grassland and small shrub vegetation. The classification accuracy achieved in this
study was greater than that reported in previous work aimed at detecting invasive conifers in New
Zealand using combinations of ALS and multispectral data [22] or conventional airborne imagery [31].
This result was expected as the vegetation and terrain structure in this study were less complex than in
the previous work, and spatial resolution of the remotely sensed datasets was higher [22]. In contrast
to a previous invasive conifer detection study in a similar environment using conventional airborne
imagery [31] we were able to identify much smaller trees including the vast majority of trees that had
begun coning. This result is significant for managers seeking to eliminate infestations before they reach
maturity and become seed sources and suggests that data with higher spectral and spatial resolution
data is important for this purpose.

The classification accuracy achieved in this study was slightly higher than that reported in
comparable supervised image classification approaches. For example, research from South Africa
using UAV imagery for invasive plant detection in a semi-arid environment with relatively simple
vegetation structure [51] reported kappa values of 0.8305 and 0.8088 using two different supervised
classifiers. However, a conventional consumer grade RGB camera was used in this study and it is
possible that the improved classification accuracy we obtained was due to the use of a narrow band
multispectral sensor used. In more complex environments in Northern Portugal, UAV data has been
found to yield lower kappa values (0.51) although these results may not compared directly because
the target plant was not flowering in this study and the imagery used was of a coarser resolution [75].

Our results provide further evidence for the capability of combining multispectral imagery with
ALS for detection of exotic conifers in concordance with previous studies [22,46]. We found that
combining these two data sources led to the development of models with the highest classification
accuracy. However, in contrast to the previous work, we did not find that the inclusion of ALS
data to added significantly to the classification accuracy levels. This is probably due to the ease of
separating the target trees with the surrounding vegetation based on spectral properties in the study
environment. This finding would likely be different in a site with greater vegetation height and more
complex composition where the fusion of structural (ALS or UAV-LS) and spectral data would be
critical. In more complex settings alternative approaches based on object-based image analysis or deep
learning may be necessary to achieve the required accuracy levels.
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This study has shown for the first time that UAV data can be used for highly accurate detection
of the early stages of exotic conifer invasions that are characterized by very scattered individuals of
smaller statue. This includes very small trees that may not yet have begun coning and provides an
operational tool that supports the early and effective control of invasions before new seed dispersal
can occur. Our results showed that only 0.07% of coning trees were shorter than the height threshold
(1 m) where we could confidently detect invasive conifers at the cusp of spreading further with a very
high degree of accuracy. These results offer the first development of methods for early detection of
conifer invasions as there was previously no research into this topic in the existing literature [79].

The field dataset collected in this study represents the most detailed “ground-truth” dataset of its
type to the best of our knowledge. This was the result of a significant amount of data collection effort by
the field team. While detailed datasets can be collected for scientific purposes, such ground assessments
would not be feasible for operational purposes including control and management planning. These
applications require quantitative information such as coning state, species, tree density etc. Even
simplified sampling of invasions is often seen as too costly and remotely sensed data and its analysis
can provide such vital information more efficiently for operational tree invasion management across
larger landscapes. The magnitude of this work effort shows the importance of developing suitable
remote sensing methods for invasive conifer detection and monitoring. Remotely sensed data will be a
vital tool for those responsible for control of invasive conifers and monitoring the efficacy of control
efforts. These methods can potentially provide accurate information over larger areas using only
limited financial resources. The comparison of data collected with different properties and different
platforms in this study will also assist land managers with data collection options. The choice of
platform and sensor used in practice will be influenced by the properties of the area of interest, the size
of area for which information is required, and the budget for data collection. However, our results
show that data collected from both UAV and manned aircraft provide viable and accurate methods for
invasive conifer detection.

To the best of our knowledge this is the first study that directly compares UAV data to manned
aircraft for invasive conifer detection with the intention of identifying trees before the onset of coning.
Differences in the properties of the training datasets for each platform were observed. The lower
quartile of the elevation distribution extracted from the UAV-LS data (Figure 4) was considerably
lower for the manned aircraft dataset than for the UAV data. This may be the result of larger footprint
and the resulting lower CHM resolution of the manned aircraft data compared to the UAV-LS dataset.
Alternatively, this could be caused by the multiple, rather than single, return capability of the manned
aircraft scanner resulting in a greater penetration and characterization of smaller trees and areas where
the invasive conifer canopy was dense. Alternatively, the positional accuracy of the UAV-LS data
cannot be ruled out as a source of this result despite the rigorous approach taken to minimize this error.
Despite these differences data from both the UAV and the manned aircraft platforms resulted in high
classification accuracy in this study.

Separate training datasets were developed for each data collection platform based on the remote
sensing data. This was necessary because of the differences between the datasets due to the spectral
properties, spatial resolution, and differences in shadow levels due to the time of year that the imagery
had been acquired. The properties of the dataset showed better spectral separation between the
invasive conifers and the surrounding tussock in the manned aircraft data. This may be the result of
the greater sophistication of the manned aircraft mounted camera and the generally better illumination
of the scene in the airplane imagery as it was collected in summer. Both data sources exhibited excellent
differentiation in the elevations extracted from the ALS data. This is likely the result of the simplistic
nature of the study site where most of the vegetation with a height significantly greater than zero were
invasive conifers. The misclassification of objects below 1 m for ALS alone was due to tall tussocks
and shrubs that were occasionally present at the site due to the land use history and effects of grazing
on the surrounding vegetation.
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Two different image classification approaches were successfully developed and compared for both
data sources. The RF algorithm was carefully tuned using an exhaustive search, this requires significant
additional computing time. The simpler LR classifier does not require tuning in the same manner and
so is substantially less computationally demanding. The accuracy of both classifiers was very high and
were comparable. The RF algorithm performed slightly better than LR for the more complex models
including more predictors. However, for the simpler models containing fewer predictors the LR
outperformed RF algorithm. As a result, in this study area we would recommend the use of the simpler
algorithm as gains associated with the use of the machine learning were absent or minimal and do not
justify the additional complexity of using a model of this type. However, this may not be the case in
more complex environments where the ability of the machine learning algorithm to better characterize
complex and non-linear patterns in the fitting data may be more valuable. Other research into image
classification for invasive plant detection has used “one class” algorithms with the results suggesting a
high level of accuracy [29,30]. These approaches have the advantage of only requiring identification of
a single positive class during algorithm training. This means that errors associated with incorrectly
specified training datasets would be reduced and the requirement for field data collection is lessened.

The performance of models with different candidate predictor variables provided insight into
their capacity for invasive conifer detection. A particularly noteworthy observation was that there
was little improvement in classification accuracy when ALS or UAV-LS data was combined with
multispectral imagery. This result is likely the consequence of the simplistic vegetation structure
and composition in the study site. The dominant short tussock grasses and exotic grasses have very
different spectral properties to the invasive conifers; this is particularly evident during the summer
months when the grasses are commonly brown. This finding indicates that significant expense can
be avoided by only collecting one type of remote sensing data. However, the ALS and multispectral
data collected from a manned aircraft for this study were collected during the same mission so there is
limited additional cost for the acquisition and no negative aspects as long as the acquisition settings
are optimized for the most important dataset. Currently UAVs of the type used in this study are not
capable of carrying two miniaturized sensors to collect data over a large area. Developments in UAV
technology such as large fixed wing UAVs with alternative power sources will likely make this feasible
in the near future. It should also be noted that there is an additional cost associated with data storage
and processing when additional datasets are collected.

5. Conclusions

In this paper, we have evaluated the capability of pixel-based classification methods to identify
invasive conifers in a vulnerable grassland environment. We found that high-resolution data collected
using both UAV and manned aircraft was valuable for this task. Critically, the vast majority of
seed-producing individuals were accurately identified even though they were very small. This was
in part due to the very high spatial resolution of the data acquired. Both data sources and both
classification approaches examined provided highly accurate classification results.
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74. Dvořák, P.; Müllerová, J.; Bartaloš, T.; Brůna, J. Unmanned aerial vehicles for alien plant species detection
and monitoring. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, XL-1/W4, 83–90. [CrossRef]

75. Alvarez-Taboada, F.; Paredes, C.; Julián-Pelaz, J. Mapping of the Invasive Species Hakea sericea Using
Unmanned Aerial Vehicle (UAV) and WorldView-2 Imagery and an Object-Oriented Approach. Remote Sens.
2017, 9, 913. [CrossRef]

76. Martin, F.M.; Müllerová, J.; Borgniet, L.; Dommanget, F.; Breton, V.; Evette, A. Using Single- and Multi-Date
UAV and Satellite Imagery to Accurately Monitor Invasive Knotweed Species. Remote Sens. 2018, 10, 1662.
[CrossRef]

77. Bryson, M.; Reid, A.; Ramos, F.; Sukkarieh, S. Airborne vision-based mapping and classification of large
farmland environments. J. Field Robot. 2010, 27, 632–655. [CrossRef]

78. Vaz, A.S.; Alcaraz-Segura, D.; Campos, J.C.; Vicente, J.R.; Honrado, J.P. Managing plant invasions through
the lens of remote sensing: A review of progress and the way forward. Sci. Total Environ. 2018, 642, 1328–1339.
[CrossRef]

79. Juanes, F. Visual and acoustic sensors for early detection of biological invasions: Current uses and future
potential. J. Nat. Conserv. 2018, 42, 7–11. [CrossRef]

80. Wong, T.T. Performance evaluation of classification algorithms by k-fold and leave-one-out cross validation.
Pattern Recognit. 2015, 48, 2839–2846. [CrossRef]

81. Immitzer, M.; Vuolo, F.; Atzberger, C. First Experience with Sentinel-2 Data for Crop and Tree Species
Classifications in Central Europe. Remote Sens. 2016, 8, 166. [CrossRef]

82. Roussel, J.R.; Auty, D. lidR: Airborne LiDAR Data Manipulation and Visualization for Forestry Applications,
R package version 2.0.3. 2018. Available online: https://CRAN.R-project.org/package=lidR (accessed on 20
July 2019).

83. R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing:
Vienna, Austria, 2018.

84. GDAL Development Team. GDAL—Geospatial Data Abstraction Library, Version 2.02; Open Source Geospatial
Foundation: Beaverton, OR, USA, 2016.

85. Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32.:1010933404324. [CrossRef]

http://dx.doi.org/10.1080/07038992.2016.1143330
http://dx.doi.org/10.1016/j.isprsjprs.2015.06.009
http://dx.doi.org/10.1371/journal.pone.0102381
http://dx.doi.org/10.1080/01431161.2013.799790
http://dx.doi.org/10.3390/rs5020612
http://dx.doi.org/10.1016/j.isprsjprs.2017.07.007
http://dx.doi.org/10.3390/rs10081216
http://dx.doi.org/10.3389/fpls.2017.00619
http://dx.doi.org/10.3389/fenvs.2017.00044
http://dx.doi.org/10.5194/isprsarchives-XL-1-W4-83-2015.
http://dx.doi.org/10.3390/rs9090913
http://dx.doi.org/10.3390/rs10101662
http://dx.doi.org/10.1002/rob.20343
http://dx.doi.org/10.1016/j.scitotenv.2018.06.134
http://dx.doi.org/10.1016/j.jnc.2018.01.003
http://dx.doi.org/10.1016/j.patcog.2015.03.009
http://dx.doi.org/10.3390/rs8030166
https://CRAN.R-project.org/package=lidR 
http://dx.doi.org/10.1023/A:1010933404324


Remote Sens. 2019, 11, 1812 21 of 21

86. Kuhn, M. Caret: Classification and Regression Training, R package version 6.0-84. 2018. Available online:
https://CRAN.R-project.org/package=caret (accessed on 20 July 2019).

87. Wright, M.N.; Ziegler, A. Ranger: A Fast Implementation of Random Forests for High Dimensional Data in
C++ and R. J. Stat. Softw. 2017, 77, 1–17. [CrossRef]

88. Cohen, J. A Coefficient of Agreement for Nominal Scales. Educ. Psychol. Meas. 1960, 20, 37–46. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://CRAN.R-project.org/package=caret
http://dx.doi.org/10.18637/jss.v077.i01
http://dx.doi.org/10.1177/001316446002000104
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Materials and Methods
	Study Site
	Field Data
	Remotely Sensed Data
	Manned Aircraft Data
	UAV Data
	Data Processing

	Supervised Classification
	Accuracy Assessment

	Results
	Field Data
	Training Data
	Model Development
	Independent Validation

	Discussions
	Conclusions
	References

