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Research into remote sensing tools for monitoring physiological stress caused by biotic and abiotic fac-
tors is critical for maintaining healthy and highly-productive plantation forests. Significant research
has focussed on assessing forest health using remotely sensed data from satellites and manned aircraft.
Unmanned aerial vehicles (UAVs) may provide new tools for improved forest health monitoring by pro-
viding data with very high temporal and spatial resolutions. These platforms also pose unique challenges
and methods for health assessments must be validated before use. In this research, we simulated a dis-
ease outbreak in mature Pinus radiata D. Don trees using targeted application of herbicide. The objective
was to acquire a time-series simulated disease expression dataset to develop methods for monitoring
physiological stress from a UAV platform. Time-series multi-spectral imagery was acquired using a
UAV flown over a trial at regular intervals. Traditional field-based health assessments of crown health
(density) and needle health (discolouration) were carried out simultaneously by experienced forest
health experts. Our results showed that multi-spectral imagery collected from a UAV is useful for iden-
tifying physiological stress in mature plantation trees even during the early stages of tree stress. We
found that physiological stress could be detected earliest in data from the red edge and near infra-red
bands. In contrast to previous findings, red edge data did not offer earlier detection of physiological stress
than the near infra-red data. A non-parametric approach was used to model physiological stress based on
spectral indices and was found to provide good classification accuracy (weighted kappa = 0.694). This
model can be used to map physiological stress based on high-resolution multi-spectral data.
� 2017 Scion (New Zealand Forest Research Institute). Published by Elsevier B.V. on behalf of Interna-

tional Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). This is an open access article under
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Forest plantations provide a wide range of economic, social and
environmental benefits in many parts of the world (Yao et al.,
2014). In New Zealand, forestry exports provide the third largest
source of export earnings, worth over NZ$5 billion per annum
and forest industry directly employs 18,000 people (NZFOA,
2013). New Zealand’s commercial plantation forest sector is dom-
inated by the fast-growing conifer species Pinus radiata D. Don (P.
radiata) which occupies 90% of the total plantation area (Watt
et al., 2017). Such reliance on a single species means that the forest
industry is particularly vulnerable to biosecurity incursions by
plant pests and pathogens that pose a threat to P. radiata. Despite
being an island nation with rigorous biosecurity protocols and
monitoring programmes, incursions remain a serious threat with
recent introductions estimated to have cost New Zealand’s primary
sector upwards of NZ$ 400 million (Hulme, 2014). In the context of
forestry, P. radiata in New Zealand is currently affected by a num-
ber of pathogens including Dothistroma septosporum, Cyclaneusma
minus and Phytophtora pluvialis. Infection by these organisms
results in a significant loss in forest productivity. It is estimated
that Dothistroma Needle Blight alone resulted in a cost of NZ
$19.8 million per year to the New Zealand economy throughout
the 2000s (Watt et al., 2011).

Forest health surveillance forms a significant part of biosecurity
monitoring and effective pathogen management efforts (Bulman
et al., 2016). Surveillance methods are based on the detection of
infection symptoms; these are specific to each pathogen but for
plantation trees these commonly include foliar discolouration fol-
lowed by some degree of defoliation. Traditionally, regular ground-
based surveys carried out by highly trained field technicians have
sing, Inc.
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formed the basis of monitoring efforts in many countries (Brown
and Webber, 2008; Bulman et al., 2004; Smith et al., 2008). These
surveys are commonly carried out on an annual basis (Coops et al.,
2006) and are used both to identify new incursions and to plan
control or damage mitigation measures (Bulman et al., 2016). Fur-
thermore, information from these surveys contributes towards
policy development, international reporting obligations, forest
planning and investment decision making (Stone and Coops,
2004). The utility of traditional survey techniques are limited by
the small spatial coverage that can be achieved and the inevitable
subjectivity between assessors conducting ground surveys.

Modern remote sensing tools have the potential to complement
ground-based surveys by expanding spatial coverage and offering
objective assessments of tree and forest health. To realise these
benefits it is important to correctly identify the survey techniques
and data sources required to meet the surveillance objectives
(Wulder et al., 2006a). An appropriate sensor choice and resolution
can be defined by the desired sensitivity of the surveillance and the
physiological impacts of the stressor on observable properties such
as the spectral characteristics of foliage. With an appropriate sen-
sor choice and resolution defined, the increased area that can be
covered and assessed using remote sensing is typically large and
complete coverage may even be achievable, greatly improving
the accuracy and completeness of surveillance (Wulder et al.,
2006b). Aerial survey (also referred to as aerial sketch mapping),
which involves manual identification of disease outbreaks by a
skilled observer on-board an aircraft, is a commonly used, afford-
able and flexible approach for large-scale mapping of disease out-
breaks. This method provides an accurate means of detection of a
wide-range of forest health symptoms but offers limited ability
to resolve different levels of physiological damage (Stone et al.,
2013) and often lacks spatial specificity for damage that occurs
at a fine scale over a relatively narrow time-frame (Johnson and
Ross, 2008).

The acquisition of digital spatial data has many, often compli-
mentary, advantages compared with manual aerial surveys,
including a high level of consistency, spatial accuracy and automa-
tion of subsequent analysis. Most research has used satellite ima-
gery to quantify the spatial extent of insect outbreaks and tree
mortality at regional and landscape scales using imagery of a mod-
erate (5–30 m) resolution (Meigs et al., 2011; Fraser and Latifovic,
2005). Over the last decade a growing number of studies have used
high resolution (<5 m) satellite imagery to characterise tree mor-
tality at finer spatial scales on individual trees, or clusters of trees,
within a stand (Stone et al., 2012; Dennison et al., 2010; Hicke and
Logan, 2009; Guo et al., 2007; Coops et al., 2006). Generally, the use
of satellite imagery with a finer spatial resolution (Coops et al.,
2006; Hicke and Logan, 2009; White et al., 2005; Wulder et al.,
2008) has been shown to more accurately classify mortality, result-
ing from insect outbreaks, than imagery with medium resolution
(Franklin et al., 2003; Skakun et al., 2003; Wulder et al., 2006).

Pest and disease detection remains a key target for remote sens-
ing technologies. To date, only a few studies have demonstrated
successful disease detection in forests using high resolution
multi-spectral imagery from aircraft (Leckie et al., 2004), satellites
(Poona and Ismail, 2013) and hyper-spectral imagery frommanned
aerial platforms (Coops et al., 2003; Calderón et al., 2015; Pu et al.,
2008). This is in contrast to agricultural research where a range of
studies have examined the use of remote sensing data for detection
of foliar pathogens in annual agricultural crops. This may be
because disease symptoms in these crops are often expressed in
the upper parts of the plant and agricultural cropping systems
are structurally simple and small in scale by comparison to forests
(Barton, 2012; West et al., 2003; Sankaran et al., 2010).

Change detection techniques provide a useful starting point for
the identification of subtle changes in forest health based on spec-
tral information. The aggregation of multi-temporal composite
images can greatly improve the signal to noise ratio (Rullan-Silva
et al., 2013) and using longer time periods can mitigate the detri-
mental impacts of environmental factors, such as cloud cover, on
detection. Using this approach, acceptable accuracies have been
demonstrated for detection of bark beetle attack on conifer species
(Garrity et al., 2013; Meddens and Hicke, 2014; Havašová et al.,
2015; Goodwin et al., 2008) and needle discolouration resulting
from Dothistroma pini (Coops et al., 2003). Analysis of time-series
data was also used by Eitel et al. (2011) who girdled a number of
trees in a piñon-juniper woodland and then successfully detected
tree stress using a dense sequence of multi-spectral images from
the RapidEye satellite constellation (Eitel et al., 2011). Invoking
stress symptoms in this manner provides superior experimental
control and is well suited to testing and calibration of methods
for the early detection of symptoms such as pathogen induced
physiological changes in foliage.

Imagery frommanned and satellite platforms provides coverage
over large areas but is typically time consuming and relatively
costly to acquire on a regular basis. This makes data from these
platforms poorly suited as means for early detection of outbreaks,
near-continuous monitoring of high-risk sites such as those fre-
quently accessed for public recreation, or for identification of
small, isolated outbreaks that could easily be missed in medium
resolution imagery. The development of unmanned aerial vehicles
(UAVs) may offer new platforms for the collection of very high res-
olution imagery, while also offering the ability to collect data at
short intervals in a cost-effective manner.

Despite their potential advantages, studies using UAVs to detect
biotic damage in forests are scarce. Hyper-spectral data were
acquired from a UAV over a stand of Norway spruce (Picea abies
L. Karst.) infested with the European spruce bark beetle (Ips
typographus L.) (Näsi et al., 2015). Using this data, Näsi et al.
(2015) were able to classify individual trees into classes of healthy,
infested and dead with a reasonable accuracy (Cohen’s
kappa = 0.6.). Lehmann et al. (2015) used a UAV equipped with
compact digital camera to characterise defoliation of oak trees by
the oak splendor beetle (Agrilus biguttatus). A modified normalized
difference vegetation index (mNDVI) derived classification was
used to distinguish between five vegetation health classes with
Kappa index of agreement ranging from 0.77 to 0.81 for the two
study sites (Lehmann et al., 2015).

In this study, disease symptoms in a stand of P. radiata were
simulated through careful application of herbicide to groups of
trees of varying sizes. A UAV equipped with a multi-spectral sensor
was used to regularly monitor changes in needle colour prior to
treatment and for three months after herbicide application with
the aims of (i) developing suitable data collection methods and
processing procedures for UAV data acquisition and analysis to
detect physiological stress, (ii) to test the sensitivity of specific
spectral indices to provide an indication of the early onset of phys-
iological stress and (iii) to determine the optimal spatial resolution
of imagery for detection of a simulated disease outbreak across
tree clusters of varying size.

2. Materials and methods

2.1. Study site

The study site was located in Kinleith Forest in New Zealand’s
Central North Island (Fig. 1) (latitude 38� 24018.74S, longitude
176� 0059.28E), approximately 28 km southeast of the township
of Tokoroa. The site is around 230 m above sea level and slopes
gradually up towards the south-eastern corner of the trial. The site
experiences a temperate climate (total annual rainfall = 1238 mm,
mean annual temperature = 13.4 �C) and the soils are loam
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Fig. 1. Location of the study site within New Zealand and an image of the coaxial quad-copter UAV used during data collection. The main panel shows an image of the multi-
spectral data collected with treated trees evident and outlined in blue (image date = 03-03-2016). (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

Table 1
Experimental treatments used in the study. Cluster size refers to the number of trees
subjected to herbicide application in the treatment.

Treatment Description Cluster size

0 Control no trees poisoned 0
1 Single tree closest to plot centre is poisoned 1
2 Two trees closest to the plot centre poisoned 2
3 Four trees closest to the plot centre poisoned 4
4 Eight trees closest to the plot centre poisoned 8
5 Sixteen trees closest to the plot centre poisoned 16
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belonging to the Kairanga series (Hewitt, 2010). The trial area of
interest was 2.7 ha and was located within a 7.3 ha stand of P. radi-
ata planted in July 1993. Site preparation was via V-blading and the
previous land use at the site was also a forest plantation. Planting
stand density was 635 sph (4.5 m � 3.5 m), no thinning was under-
taken and trees that suffered mortality early in the rotation were
replaced. The site was organised into 35 plots as part of a fungicide
spray trial into genetic disease resistance in immature trees. The
fungicide spray trial was completed before age 6 (1999). At the ini-
tiation of this study a comprehensive survey of the site revealed
that there was no evidence of disease expression and trees were
in good general health. Study trees were mature and large (mean
diameter at breast height at 1.4 m above ground = 462 mm, mean
top height = 43.5 m) during data collection and were harvested
soon after the research concluded.

2.2. Experimental treatments

The original field plots were used to distribute experimental
treatments throughout the study area. These were used because
they were clearly demarcated and accurately mapped making
access and navigation simple. Five plots were randomly assigned
to each of 6 treatments (Table 1) and the remaining 5 plots were
excluded from the trial. All plots were rectangular and contained
35 trees in seven rows planted with a spacing of 3.5 ⁄ 4.5 m. Trees
that were dead or severely suppressed were not included in the
trial. The experimental treatment defined the size of the cluster
(groups of treated trees) that were poisoned to cause physiological
stress and simulate the onset of colour change and changes in nee-
dle retention as might be expected during a disease outbreak. The
objective of using different sized clusters was to investigate the
utility of different remotely sensed datasets for detecting different
levels of physiological stress as might be expected from symptom
expression from certain diseases. Subject trees were treated with
Metsulfuron methyl in the form of water dispersible granules at
a rate of 200 g/l. This mixture was injected through holes drilled
into the tree stem. Holes were drilled 25 cm apart around the cir-
cumference of each stem and 15 ml of herbicide was deposited into
each hole. In total 13.32 l of Metsulfuron mixture were applied to
the study site. This herbicide application technique was selected
as it allowed for highly targeted application and because expert
advice indicated it would invoke changes in foliar colour and reten-
tion over the duration of the study. Herbicide application was com-
pleted for all trees in a single day on the 3rd December 2015.

2.3. Tree health data

A ground reference dataset was recorded on all study trees. Tree
canopies were assessed for needle discolouration and canopy den-
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sity from the ground by an experienced assessor who is regularly
engaged in routine forest health monitoring. Assessors undergo
regular training, auditing, and calibration and carry photographic
reference material to improve consistency. To reduce the variance
associated with assessment subjectivity the same expert assessor
was used for all assessments for the duration of the trial. Each tree
was assessed from two separate angles, approximately 180� from
each other, so that a comprehensive assessment of the tree canopy
could be made. Assessment locations were permanently marked
with paint on the ground and trees were assessed from the same
positions, and at approximately the same time of day, each time.
Wherever possible, ground assessments were made on the same
day remotely sensed data were collected. A commonly used
approach to classifying stress symptom expression using data col-
lected in the field is to categorise discolouration scores into symp-
tom severity classes. The classes used, based on the forest
manager’s standard procedures, were: no symptom expression
(None = 0–10% canopy discolouration), slight symptom expression
(Slight = 11–40% canopy discolouration), moderate symptom
expression (Moderate = 41–80% canopy discolouration) and severe
symptom expression (Severe = 80 –100% canopy discolouration).
2.4. Remotely sensed data collection

A coaxial quad-copter UAV was used for all data collection. The
craft was a modified version of the Aeronavics (www.aeronavics.
co.nz) SkyJib heavy-lift airframe (Fig. 1). Lift was provided by eight
kde 5215 motors which were used to power 38 cm propellers. This
craft had a flying time of around 15 min with a payload of approx-
imately 5 kg and provided a stable platform even in strong and tur-
bulent wind conditions. A single flight plan was used for all data
collections to minimise variance associated with campaign settings
in subsequent acquisitions. The flight plan used 18 flight lines to
cover the area of interest and ensured that all craft manoeuvres
and altitude adjustments occurred outside of the study area to
minimise flight-related artefacts in the data collected. The UAV
launch site was located in an adjacent elevated, recently harvested
stand and afforded the pilots and ground control equipment unin-
terrupted view and communication with the craft.

A series of nine ground control points (GCPs) were established
around the study area and fixed using a Trimble Geo7X GNSS
(Trimble Navigation Ltd., Sunnyvale, CA, USA). These fixes were
subsequently differentially corrected using a local base station net-
work maintained by Land Information New Zealand (LINZ). The
targets established at the ground control points had reflective
properties that could be easily manually identified in the multi-
spectral imagery. The GCPs were used to geo-rectify all imagery
with a high degree of accuracy.
Table 2
Spectral indices calculated from the multi-spectral imagery.

Spectral index Equation Source

Normalised Difference
Vegetation Index (NDVI)

ðNIR�REDÞ
ðNIRþREDÞ Rouse et al. (1974)

Green Normalised Difference
Vegetation Index (GNDVI)

ðNIR�GREENÞ
NIRþGREEN

Gitelson and Merzlyak (1998)

Red Edge Normalised
Difference Vegetation
Index (RENDVI)

ðNIR�REDEDGEÞ
NIRþREDEDGE

Gitelson and Merzlyak (1994)
and Sims and Gamon (2002)

Non Linear Index (NLI) ðNIR2þREDÞ
ðNIR2�REDÞ

Goel and Qin (1994)
2.4.1. Multi-spectral imagery
Narrow band multi-spectral imagery was collected using a

MicaSense RedEdge 3 camera (Micasense, Seattle, USA). The cam-
era provides imagery in five narrow bands (blue = 455–495 nm,
green = 540–580 nm, red = 658–678 nm, red edge = 707–727 nm
and near-infrared = 800–880 nm) via five separate imaging sensors
that operate nearly simultaneously. The camera has a lens focal
length of 5.5 mm and field of view of 87.4�. The camera was housed
in a gimbal to ensure nadir orientation during image acquisition.
The flight plan ensured cross-track and along-track overlap of
85% and a calibrated reflectance panel was imaged directly before
and after each flight and used for reflectance calibration using the
empirical line method (Smith and Milton, 1999). The multi-
spectral imagery was collected from a flying altitude of approxi-
mately 90 m above the local terrain and resulted in a ground sam-
ple distance (GSD) of 6 cm. Imagery acquisition was limited to
within two hours either side of local solar noon to minimise shad-
ows in the final imagery.

Several spectral indices were chosen and calculated from each
set of images based on a review of previous literature (Table 2).
Spectral indices were selected for inclusion based on the spectral
bands available in the multi-spectral dataset and evidence of cor-
relation with plant physiological stress from previous research.
Normalised difference vegetation index (NDVI) is a very well
known and widely used ratio that has been shown many times
to be correlated with plant condition, physiological stress and pho-
tosynthetic activity in a wide range of environments (Wang et al.,
2004; Goetz et al., 2003; Verbesselt et al., 2009; Garcia-Ruiz et al.,
2013; Cunningham et al., 2007). The green normalised difference
vegetation index (GNDVI) and the red edge normalised difference
vegetation index (RENDVI) were included specifically to examine
the sensitivity of indices including the red edge and green bands
and compare these directly to an index based on near-infrared
band (NDVI). The non-linear index (NLI) was selected because
some previous research findings suggest that the relationship
between spectral indices and some tree bio-physical properties
are non-linear (Goel and Qin, 1994). Therefore, it is possible that
NLI might be valuable as an indicator of various stages of physio-
logical stress as it expresses the non-linear relationships in a linear
manner (see Table 3).
2.4.2. Multi-spectral data processing
Multi-spectral images were exported from the MicaSense

RedEdge 3 in 12-bit RAW format. These images were mosaicked
into a single, multi-band image covering the entire study area.
The raw digital numbers (DNs) were converted into reflectance
values using the calibrated reflectance panel. The relationship
between DNs and the natural logarithm of the image surface reflec-
tance is linear and the y-intercept can be interpreted as the mini-
mum surface reflectance that can be detected for each wavelength
band (Smith and Milton, 1999). This can then be used to develop a
regression equation to convert DNs to reflectance values using a
calibration equation (Furby and Campbell, 2001). Images were geo-
rectified using the GCPs recorded within the study site and visible
in the imagery.

Data collection spanned several months and so methods were
needed to account for background changes in the target vegetation
that were not caused by the experimental herbicide application.
These changes include physiological response to the growing sea-
son, changes caused by climatic events and atmospheric effects
that could not be controlled for using other methods. Without a
suitable method for control these influences would confound the
physiological stress signal induced by the application of the herbi-
cide. Following the method of Healey et al. (2005), spectral indices
were detrended to remove the extraneous effects. The approach
was based on the assumption that changes in non-treated parts
of the study site could be assumed to be caused by factors unre-
lated to the herbicide-induced stress. By characterising these unre-
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Table 3
Overall classification accuracy expressed through Cohen’s Kappa and associated 95% confidence interval (KappaCI), for all 13 models examined calculated using an independent
10% resampling of the training dataset. Predictor variables denoted with an ⁄ were included in the model.

Model Predictor variables Accuracy statistics

Identifier NDVI GNDVI RENDVI NLI Kappa KappaCI

1 ⁄ ⁄ ⁄ ⁄ 0.644 0.621–0.667
2 ⁄ ⁄ ⁄ 0.628 0.605–0.651
3 ⁄ ⁄ ⁄ 0.631 0.609–0.654
4 ⁄ ⁄ ⁄ 0.694 0.672–0.717
5 ⁄ ⁄ ⁄ 0.583 0.559–0.607
6 ⁄ ⁄ 0.635 0.612–0.659
7 ⁄ ⁄ 0.542 0.518–0.566
8 ⁄ ⁄ 0.574 0.551–0.598
9 ⁄ ⁄ 0.610 0.588–0.633
10 ⁄ 0.570 0.546–0.594
11 ⁄ 0.484 0.459–0.501
12 ⁄ 0.528 0.504–0.553
13 ⁄ 0.390 0.364–0.415
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lated trends we could minimise the potential impact on the any
signal from the stressed study trees (Eitel et al., 2011).

Spectral indices were detrended by identifying 25 control areas
within the study area, based on the final multi-spectral image fol-
lowing review of the full time-series of mosaicked images to
ensure that the control regions were representative. Care was
taken to ensure that these areas did not overlap the experimental
tree clusters. Control areas were 5 m squares and were carefully
selected to cover conditions that were representative of the condi-
tions in the study plots. The spectral indices extracted from the
control areas were deemed to represent the average conditions
of the study forest within a specific time step. Spectral indices
extracted from within the experimentally treated areas were
rescaled to the standard deviation above or below the scene’s mean
forest value for the spectral indices as extracted from the control
areas (Healey et al., 2005) as follows:

Si ¼ ðS� SlÞ=Sd ð1Þ
where S is the original spectral index value, Si is the rescaled spec-
tral index, Sl is the mean value for the control areas within a time
step and Sd is the standard deviation of values from the control
areas. Using this method, the time-series spectral indices can be
detrended in a robust and easy to implement manner provided that
the control areas selected are representative of the average forest
conditions within a time step (Healey et al., 2005).

2.5. Image resolution

The multi-spectral imagery collected using the UAV were re-
sampled to coarser resolutions. This allowed us to examine the
effect of image resolution on the sensitivity of detrended spectral
indices to physiological stress. We chose to resample from the orig-
inal GSD of 0.06 m to generate imagery with 0.3 m, 1 m, 3 m, and
5 m resolutions. Image resolution is closely related to acquisition
costs and these resolutions were selected because they were sim-
ilar to the specifications for several cost-effective imagery products
routinely acquired for forest monitoring and management applica-
tions in New Zealand. This is important because new tools must
remain cost-effective if they are to achieve uptake for forest mon-
itoring applications. All image re-sampling was completed using
the open-source gdalwarp function of the GDAL software package
(GDAL Development Team, 2016).

2.5.1. Random forest
The ensemble decision tree classifier random forest (RF) uses

bootstrap aggregated sampling (bagging) to construct many indi-
vidual decision trees, from which a final class assignment is deter-
mined (Breiman, 2001). RF is now regularly applied to natural
resource assessment (Mellor et al., 2013) and has previously been
used, in combination with remotely sensed data, to successfully
model several variables of interest in this forest type (Dash et al.,
2015, 2016; Watt et al., 2015, 2016). Decision trees are constructed
using a sample from the available training data, with the remaining
assigned as out-of-bag (OOB) samples. At each node, a random
subset of predictor variables are tested to partition the observation
data into increasingly homogeneous subsets. The node-splitting
variable selected from the variable subset is that which resulted
in the greatest increase in data purity (variance or Gini) before
and after the tree node split (Cutler et al., 2007). This process ends
when there are no further gains in purity. Response variables can
be continuous, calculated by averaging, or categorical where pre-
dictions are derived from a model vote among decision trees. Com-
putational efficiency of the algorithm is enhanced, compared with
alternative approaches, as only a sample of variables are used at
each node split. This also reduces correlation between trees,
improving both predictive power and classification accuracy. The
OOB sample data are used to compute accuracies and error rates,
averaged over all predictions, and estimate variable importance
(Cutler et al., 2007; Mellor et al., 2013). RF provides two methods
to estimate the importance of each predictor variable in the model.
The mean decrease in accuracy (MDA) importance measure is cal-
culated as the normalised difference between OOB accuracy of the
original observations to randomly permuted variables (Cutler et al.,
2007; Mellor et al., 2013). An alternative variable importance mea-
sure is calculated by summing all of the decreases in Gini impurity
at each tree node split, normalised by the number of trees
(Criminisi et al., 2012; Mellor et al., 2013). RF is a well-regarded
machine learning tool that can identify complex and non-linear
relationships in fitting datasets and has been shown to offer high
classification accuracy (Cutler et al., 2007; Criminisi et al., 2012;
Dash et al., 2016).

Several RF models were used to examine the data using the ran-
domForest R package (Liaw and Wiener, 2002) and the R statistical
computing environment (R Core Team, 2016). RF models were fit-
ted using the stress classes calculated from the tree health assess-
ment data as response variables and the detrended spectral indices
serving as candidate predictor variables. The purpose of model
development was to compare the performance of models using
various combinations of spectral indices. Once the best performing
model was identified this was used to map the progression of
stress symptoms across the study site.

2.5.2. Model accuracy and statistical analysis
Classification performance for each model (Table 3) was

assessed using Cohens Kappa (kappa) coefficient based on a 10%
resampling of the training dataset repeated for 1000 iterations.
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During the re-sampling process, 10% of samples were excluded
from the training dataset and the remaining samples were used
to train a RFmodel to predict the stress classes of the excluded sam-
ples. Many iterations were used to eliminate the possibility that the
results observed were associated with the randomly drawn exclu-
sion sample. This provided a large (27,000 samples) independent
dataset to assess classification accuracy. Cohen’s kappa is a robust
and widely used metric for assessing the agreement between two
sets of observations. Kappa values and associated confidence inter-
vals were calculated using the ‘psych’ R package (Revelle, 2016) and
the weighted kappa statistics were reported. Confidence intervals
for kappa values were calculated using the methods proposed by
Fleiss et al. (1969) available through the ‘psych’ R package. The
kappa statistic is generally deemed to be robust because it accounts
for agreements occurring through chance. Weighted kappa values
were used so that misclassification by more than one category
was penalised more heavily, ensuring that the kappa values were
conservative. Several authors have suggested that the agreement
expressed through kappa, which varies between 0 and 1, can be
broadly classified as slight (0–0.20), fair (0.21–0.40), moderate
(0.41–0.60) and substantial (0.61–1) (Richard Landis, 1977;
Hauglin and Orka, 2016; Dash et al., 2017).

Time series data were assessed using the cross correlation factor
(CCF) available from the ‘stats’ R package. The CCF was calculated
between field discolouration measures and all spectral indices
examined. This analysis was designed to examine whether the
spectral indices and the field discolouration scores varied together
or whether there was a temporal lag that would indicate that a
spectral index was sensitive earlier or later to the field measured
scores. Linearmodels were used to examine the effect of cluster size
and image resolution on classification accuracy. The datawere visu-
ally inspected and a linear model using ordinary least squares (OLS)
including the main effects and the interaction was fit to the data.
Diagnostic plots were examined in all cases to check for compliance
with the standard assumptions of the linear models fitted. Where
evidence of a failure to comply were noted, an appropriate alterna-
tive modelling approach was selected based on generalised least
squares. An analysis of variance (ANOVA) procedure was used to
examine the influence of the main effects, cluster size and image
resolution, and the interaction between the two main effects on
various response variables. Post-hoc Tukey multiple comparison
tests were used to test for significant differences between groups.
The interaction between main effects was eliminated from the
model if its influence on the response variable was not significant
(p > 0.05). OLS models were fitted using the ‘stats’ R package (R
Core Team, 2016) and GLSmodels were developed using the ‘‘nlme”
R package (Pinheiro et al., 2017). Multiple comparison tests and
analysis of deviance tables were generated using the ‘‘car” R pack-
age (Fox and Weisberg, 2011).

3. Results

3.1. Summary of study datasets

In total, 21 separate datasets were collected, processed and
available for inclusion in the analysis. In most cases, the field data
and the multi-spectral imagery were recorded on the same date.
All remotely sensed data from the 27th November was abandoned
as unfavourable weather conditions made the data unusable. After
March 2016 the study trees were harvested and the study was con-
cluded as no further data could be collected.

3.2. Field data and simulated disease expression

Within the study period, trees treated with herbicide exhibited
symptoms including discolouration of previously green needles in
the tree canopy and, to a lesser extent, defoliation (Fig. 2). Dis-
colouration became apparent to the field assessor in herbicide
treated trees around one month after herbicide application. At this
date, the field assessments revealed needle discolouration scores
increasing from an average of 0% to an average of 80% over the
course of a month. During the entire study period there was no
change in the status of the trees allocated to the control treatment
(0–10%) where no herbicide was applied. This indicates that there
was no discernible needle discolouration in the portion of the
canopy visible from the ground. Nine trees that were treated with
herbicide application did not show any needle discolouration over
the study period. We are confident that this was the result of error
in treatment application.

In general, herbicide application induced more discolouration
than defoliation by the end of the study. The defoliation that was
observed was less widespread across the study, whereas dis-
colouration occurred across nearly all treated blocks. A significant
number of trees exposed to herbicide application exhibited no
changes in canopy density over the course of the study. For both
discolouration and canopy density the curve fitted to the trees with
herbicide application can be interpreted as the ‘‘simulated disease
expression curve” for the experimental treatments in this study.

3.3. Spectral indices

Raster datasets detailing four spectral indices (Table 2) related
to plant stress were calculated from each image mosaic. These
were clipped to the boundaries of the study tree clusters that were
manually delineated using the final image - where clusters were
easily and precisely identified (3rd March 2016). The values for
all pixels within a cluster were averaged to provide a mean value
for each cluster at each date. The spectral indices for each date
were detrended using the method described in Section 2.5.2.
Examination of time-series spectral indices from the control treat-
ment indicated that there was a significant trend in the data that
was not due to the herbicide induced stress. Once the background
changes were accounted for, the reduction in spectral indices in the
treated tree clusters was more pronounced, this suggests that the
background noise which could hide the spectral stress signal had
been adequately controlled for. The changes observed in the con-
trol plots were likely caused by the annual needle flush of P. radiata
occurring in the early summer and from the greening of trees and
understorey vegetation associated with weather patterns (Fig. 3).
Meteorological data from a nearby station showed that after a
dry spring in the region, there was low rainfall at the site through
November (93 mm) and December (32 mm) 2015. This was fol-
lowed by a return to higher rainfall levels in January (129 mm),
February (163 mm) and March (162 mm) 2016 and this pattern
probably induced a late flush in the study trees and understorey
vegetation.

Spectral indices in the control and treated areas fluctuated
throughout the experiment (Fig. 3a, b, e, f, i and j). Once detrending
was applied, the effects of physiological stress became evident.
Previous studies (Eitel et al., 2011) have used the 25th and 75th
percentiles of the indices extracted from healthy trees to define a
‘‘no-change” region. Plots could be considered stressed if the
75th percentile detrended spectral index values dropped below
the lower bound of the no change region. Following detrending,
all spectral indices remained within the no change region for the
duration of the experiment (Fig. 3c, g and i.). By contrast, the
detrended spectral indices in treated plots dropped below the no
change region following herbicide application (Fig. 3d, h and l).
The time elapsed before spectral index values moved out of the
no-stress zone provides valuable insight into the utility of the spec-
tral index and the physiological changes occurring in the subject
trees. In our study the NDVI, GNDVI, RENDVI and NLI all dropped
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Fig. 2. The study tree health data showing changes in canopy needle colour and canopy density as scored from the ground by an experienced forest health assessor. Each
datum shows data from a single assessment of a single tree and a smoothed line of best fit with 95% confidence interval for trees with (blue) and without (yellow) herbicide
application is shown. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Box and whisker plots showing the raw and detrended values for selected spectral indices observed in the control plots (n = 5) and the treated plots n = 30. Upper and
lower red dotted lines indicate the extent of the ‘‘no-change” region. The no change region was defined as the 25th and 75th percentiles of the spectral value prior to herbicide
treatment (30th October 2015). An area was classified as exhibiting significant stress if the 75th percentile of the spectral index value dropped below the no change region.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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below the no change region 29 days after herbicide application.
This coincided with the first detection of discolouration by field
crews.
The field measurements of tree condition for the herbicide trea-
ted trees were plotted on the same x-axis as the spectral indices
(Fig. 4). The changes in the spectral indices were very closely cor-



Fig. 4. The percentage discolouration within treated trees recorded by field crews (a) and the detrended values for spectral indices NLI (b), NDVI (c), GNDVI (d) and RENDVI
(e). Each datum represents a single observation of a treated tree cluster. The solid black line shows the mean value and the grey shaded area shows the 95% confidence
interval about the mean.
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related with changes in canopy colour identified by traditional
field measurement. Cross-correlation analysis between the
response variables (canopy discolouration) and the spectral indices
showed that there was no lag in changes between field observed
canopy discolouration and the spectral indices. The cross-
correlations were largest when the lag was equal to zero. This indi-
cates that the spectral indices provided an accurate indicator of
field measured values but that in this dataset they did not provide
an earlier indication of stress than the field observations.

3.4. Classification models

Random forest models were fitted to the discolouration classes
calculated from the field measurements using all four spectral
indices (Table 2) as predictors. The importance scores extracted
from this model offered some insight into the relationship between
various spectral indices and tree health scores. The importance
scores showed that NDVI was the most important predictor of dis-
colouration (MDA = 55.36) followed by RENDVI (MDA = 47.98),
GNDVI (MDA = 23.37) and NLI (MDA = 15.01). Thirteen separate
random forest models were subsequently fitted to examine the
influence of the number and choice of spectral indices. Indepen-
dent validation of these models using a 10% resampling approach
indicated that the best performing model was a three variable
model (Model 4) that included NDVI, RENDVI, and NLI as predictors
(kappa = 0.694). The second most accurate model was the four
variable model included all four spectral indices trialled (Model 1).

Graphical analysis of the best performing model (Model 4 in
Table 3) provides a means of examining classification accuracy
throughout the course of the study (Fig. 5). This analysis indicated
that classification accuracy varied throughout the course of the
study. For some time steps (13, 20, 64, 87 days), the agreement
between observed and predicted levels of physiological stress were
in perfect agreement with the field observations. For other time
steps the correspondence was less accurate. For all time steps,
the general pattern of classification was highly accurate, with a
small amount of noise associated with model mis-specification
that was most apparent during the middle stages of the appear-
ance of symptoms of physiological stress expression. This result
suggests that the RF classification model would likely be a useful
predictive model for practical applications.

3.5. Image resolution

The original imagery was re-sampled to four coarser resolution
datasets. These were processed using a custom R programme
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developed by the authors for the original imagery to extract and
detrend spectral indices for the study tree clusters. As before, the
changes in selected spectral indices over time were plotted to
assess their utility for indicating physiological stress. As the
threshold for detection of stress was of interest, separate lines
were plotted for each cluster size (Fig. 6). For all indices, noise
levels increased as the image resolution became coarser. For all
resolution imagery, NDVI was most sensitive to physiological
stress. NDVI moved further below the lower threshold of the no
change zone than the other indices. For finer resolution imagery
it was also evident that NDVI was considerably less noisy than
the other indices examined (Fig. 6). At a 5 m image resolution,
the mean NDVI values for all clusters showed substantially less
change than at finer resolutions. Many of the treatments did not
move outside of the no-change zone and those that did (4 and 2)
were only marginally outside of the no-change zone. Values for
the smallest cluster size (single tree) displayed considerably more
variation and showed the least change between their starting and
ending values during the course of the study.

The effect of image resolution and the cluster size of treated
trees on model accuracy were examined using an iterative 10%
re-sampling of the training dataset. For each image resolution
10% of the clusters were excluded at random from the training
dataset. The remaining clusters were used to fit the best perform-
ing classification model (Model 4) which was used to predict
symptom class at each time step for the excluded clusters. To
account for random variation associated with the sample, re-
sampling was repeated 1000 times. Kappa was then calculated
for each cluster size at each image resolution. This analysis
revealed that model accuracy was greatest for all cluster sizes at
a 1 m image resolution (Fig. 7). When we examined the effect of
image resolution and cluster size, model accuracy was poorest
for the smallest clusters (1 and 2 trees) and decreased with image
resolution after increasing between 0.06 and 1 m. For larger clus-
ters (4, 8 and 16 trees), model accuracy was relatively invariant
to changes in image resolution within the range tested.
4. Discussion

Our results showed NDVI to be the most useful vegetation index
for detecting the discolouration caused by physiological stress over
time. Many indices have been used within remote sensing research
over the last 40 years (Bannari et al., 1995), but NDVI remains the
most popular (Thorp and Tian, 2004) and has been widely used to
discriminate healthy from senescent foliage in forest stands
affected by insects attack (Babst et al., 2010; Jepsen et al., 2009;
Kharuk et al., 2009; Spruce et al., 2011; Lottering and Mutanga,
2016). Our results, based on simulated disease expression, support
the broad utility of NDVI for forest health assessments where mod-



Fig. 6. Mean detrended spectral indices for clusters within the study area. Red dashed line show the 25th and 75th percentile of the pre-treatment spectral index. The area
between the red-dashed line can be deemed a ‘‘no-change” region, a specral index can be considered to have changed over time when its mean value moves outside of the no-
change zone. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. Cohen’s kappa coefficient plotted against image resolution for the different
cluster sizes in each experimental treatment.
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erate levels of foliar discolouration are expected. High values of
NDVI in healthy foliage are associated with photosynthetic activity
due to contrasting low leaf reflectance in the red band that occurs
with increased chlorophyll absorption and high infrared reflection
within the spongy mesophyll layer (Rullan-Silva et al., 2013).
Values of NDVI diminish with foliage senescence which is associ-
ated with increased reflectance in the red band (Asner, 1998;
Rullan-Silva et al., 2013).

As an individual predictive variable, RENDVI was the second
most important vegetation index of those tested, and the combina-
tion of NDVI, RENDVI and NLI produced the most accurate model.
Several studies have reported that reflectance in the red edge por-
tion of the spectrum (690–740 nm) is one of the most informative
descriptors of foliar chlorophyll concentration. This portion of the
spectrum covers the region where reflectance increases sharply
from the chlorophyll-absorbed red portion of the spectrum (near
680 nm) to the strongly reflected near-infrared region of the
spectrum (Curran et al., 1990). The red edge has been found to
be very useful for early detection of stress in conifers (Eitel et al.,
2011) as this portion of the spectrum is where the first
stress-induced changes in needle reflectance are likely to occur
(Rullan-Silva et al., 2013). An advantage of RENDVI in detection
of early stress is that this index is reportedly more sensitive to
changes in high chlorophyll levels than indices such as NDVI
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(Eitel et al., 2011). Although we did not note this greater sensitivity
in our study this may have been attributable to measurements not
being at a fine enough temporal scale during early onset stress
expression. Given the disparity between our findings and those
previously reported a logical approach may be to include both
indices within predictive models of discolouration for practical
deployment.

The optimal spatial resolution of imagery for maximising
predictive power of the models was found to be 1 m for both small
and large clusters. Previous research has shown optimal spatial
resolution of multi-spectral imagery for detecting insect damage
of 2.4 m (Meddens and Hicke, 2014) for Pinus contorta dominated
stands, 1.25–2.25 m for Eucalytpus spp. (Lottering and Mutanga,
2016) and 1.75–2.3 m for P. radiata (Ismail et al., 2008). Our
results generally agree with the findings of this research, with
our results suggesting that the optimal resolution should be
approximately equal to the crown radius (approx. 1.5–2 m in this
study).

Airborne imagery and data from the modern, sub-metre resolu-
tion satellites (e.g. GeoEye-1 and WorldView-3) provide imagery of
a spatial resolution that is equivalent to or lower than the optimal
resolution identified here. New opportunities for collection of high
resolution data are now also emerging from constellations of
cubesats. These are simple, small satellites that are relatively low
cost, operate in low orbits and can be deployed in large numbers.
Several planned constellations of these satellites aim to collect
3–10 m multispectral imagery covering large portions of the Earth
with high frequency. These new data streams may have the
potential to inform forest health assessments using the approach
demonstrated in this study. However, future work will be
required to assess whether the radiometric and geometric correc-
tions that must be applied to these data will impact the utility of
the imagery.

Clusters of four and eight trees were detected with the highest
levels of accuracy at the initial resolution. These cluster sizes were
more reliably detected than smaller clusters at all resolutions
tested. When dealing with larger clusters (4, 8, 16) the accuracy
was less affected by decreasing resolution. Interestingly, at the
original resolution, the largest clusters of 16 trees were poorly
identified by the best model and only the 1 tree clusters had a
lower kappa. This was the result of two different factors. In the case
of the 1-tree clusters, the delineated crowns covered a relatively
small number of pixels and suffered from a high noise to signal
ratio where unavoidable changes in image quality and the accuracy
of geo-registration between scenes nearly overwhelmed the signal
from the relatively small number of pixels representing poisoned
trees. However, in the case of the largest clusters, our analysis
faced the opposite problem where the outline of the poisoned trees
formed a large, contiguous polygon that included many healthy
boughs and pixels representing gaps and understory. In theory, it
would be possible to apply more advanced delineation of tree
canopies using, for example, object-based analysis to improve this
result. However, any fine-scale identification of affected trees
would then suffer from the inevitable fluctuations in geo-
registration from scene to scene. Future work might explore the
use of airborne laser scanning to accurately delineate crown shapes
and reduce the sources of error we encountered with the largest
and smallest cluster sizes. Recent research has suggested that this
is practical in regularly spaced plantations where airborne laser
scanning has been used to model individual tree size and shape
(Pont et al., submitted for publication). Fusing this data with
multi-spectral data, as in Dash et al. (2017), may provide insight
into both tree growth and tree health. This has many potential
applications including offering powerful insights for genetic
improvement programmes (e.g. for P. radiata (Dungey et al.,
2009) Pseudotsuga menzisii (Dungey et al., 2012)) that have been
shown to add significant value for industrial forest plantations
(Moore et al., 2017).

Although small clusters were detected with lower accuracy, the
model was still able to identify these with considerable certainty.
This suggests that the methods demonstrated in this study might
be able to detect small, isolated outbreaks during the early stages
of a disease associated with needle discolouration. We are unaware
of previous research that has investigated both the influence of the
size of tree clusters affected by disease and the interaction
between cluster size and spatial resolution on the ability to detect
needle discolouration from UAV imagery. Detection systems of this
type may be extremely useful for studying disease dynamics in for-
est systems, this will enhance forest health surveillance efforts.

Model accuracy was greatest when predicting extreme classes
of physiological stress in the foliage rather than intermediate
levels. Using hyper-spectral imagery and photogrammetry col-
lected from a UAV, Näsi et al. (2015) predicted defoliation of Picea
abies from European spruce bark beetle. When three colour classes,
that included healthy, infested and dead, were used the kappa was
0.6, but this accuracy increased to 0.8 with only healthy and dead
colour classes (Näsi et al., 2015). Our results are consistent with
this finding and clearly show high, and sometimes perfect, classifi-
cation when prediction was made of either the healthy or severe
discolouration classes, but lower accuracy for the intermediate dis-
colouration classes.

Although physiological modelling approaches have been used
in previous research for modelling forest health (Zarco-Tejada
et al., 2004; Ligot et al., 2014), empirical approaches are far more
common. Most empirical approaches that have been used to date
are parametric models that include approaches such as generalised
linear regression models, generalised additive models (Meddens
and Hicke, 2014), mixed-effects models (Rullán-Silva et al., 2015;
Townsend et al., 2012), logistic regression (Townsend et al.,
2012; Kantola et al., 2010) and partial least squares regression
models (Oumar and Mutanga, 2014). Non-parametric modelling
approaches are less common in the literature and include classifi-
cation and regression tree analysis (CART) (Stone and Coops, 2007),
artificial neural networks (ANN) (Lottering and Mutanga, 2016)
and support vector algorithms (SVM) (Fassnacht et al., 2014). The
machine learning algorithm random forest (RF) used here is a
non-parametric method that has been successfully used elsewhere
to predict forest health (Abdel-Rahman et al., 2014; Wang et al.,
2015). In contrast to parametric approaches, which often rely on
assumptions about the underlying data, non-parametric models
have the advantage of freedom from distributional assumptions
about the underlying data. Furthermore, RF can accommodate
noisy data, missing data values, both numerical and categorical
data and can be configured to incorporate other sources of auxil-
iary spatial data. Importantly, these models have low susceptibility
to over-fitting which allows development of more complex models
with correlated variables such as RENDVI and NDVI.

Our results support evidence for the utility of UAVs as a plat-
form for forest health monitoring. The high spatial and temporal
resolution of these datasets enabled detection of a simulated dis-
ease outbreak, showing no lag from traditional forest health
assessments. However, classification accuracy was lower during
the very early stages of simulated disease expression in our study.
This means that detection accuracy during the very early stage of
an outbreak using this method may be limited using the multi-
spectral sensor deployed in our research. Previous research in a
similar context has shown that physiological stress can be accu-
rately detected at earlier stages when hyper-spectral sensors are
used (Abdel-Rahman et al., 2014). This may be attributed to the
increased spectral resolution of these sensors that can observe
physiological changes resulting in altered reflectance outside of
the wavelengths observed by sensors such as the MicaSense
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RedEdge 3. For example, previous work has shown that bands in
the short wave infrared (SWIR) can be used to detect the effects
of early stages of Sirex noctilio infestation (Ismail and Mutanga,
2011). While our work demonstrates that the choice of spectral
index is important, it is likely that the narrow spectral range limits
the detection of changes in the very early stages. This limitation is
likely to be related to the nature of the physiological response dur-
ing the early stages of insect or pathogen attack. The greater accu-
racy achieved during the early phases of symptom expression in
previous studies, using more sophisticated sensors, shows that
carefully matching sensor capability to the required objective is
important for developing effective remote sensing solutions. Based
on our results, UAV-based monitoring can be considered a valuable
tool for monitoring forest health but the delayed detection relative
to more sophisticated sensors suggests that careful matching
between sensor and application is necessary. Emerging platforms
and sensors are currently best deployed to augment existing tech-
nologies rather than to supersede more sophisticated sensors on
more traditional platforms.

The success of forest surveillance is largely governed by being
able to match the temporal, spatial and spectral characteristics of
symptoms with an appropriate platform, sensor and image analy-
sis method. Over the past two decades high resolution satellite
imagery has not had an adequate temporal resolution for routine
monitoring. As a result, airborne platforms have been more widely
used as they are more flexible and responsive (McConnell et al.,
2000). The advent of low-cost, easy to use UAVs and miniaturised
multi-spectral sensors may change the operational strategy for for-
est health monitoring. Our results suggest a role for UAVs as a
means of filling the gap between the large-scale capabilities of air-
borne surveillance and the need for targeted, regular surveillance
of smaller areas in a cost-effective manner. In contrast to orbital
satellite platforms, UAVs can also supply imagery on cloudy days
which can be an important consideration in areas where overcast
conditions are common during periods of peak symptom expres-
sion. Compared to both satellite and manned aircraft platforms,
the time and financial resources needed to prepare and initiate a
UAV flight is greatly reduced, allowing for greater flexibility in
scheduling imagery acquisition.
5. Conclusions

Results from this study clearly show that collection of multi-
spectral imagery from a UAV provides a useful method to detect
and monitor the symptoms resulting from a simulated forest dis-
ease outbreak resulting in foliar discolouration. The non-
parametric models created from this data predicted the onset of
needle discolouration well and had a high overall accuracy (kappa
range 0.39–0.64). Analyses showed the optimal spatial resolution
of imagery to range from 1 m for symptoms expressed on both
small and large tree clusters. Further research should compare
the accuracy of models created from high resolution satellite ima-
gery with those from UAVs in detection of physiological stress
resulting from disease or pest outbreaks. We conclude that UAVs
may have an important role to play in forest health monitoring, fill-
ing the spatial and temporal gap between large-scale airborne
assessment and infrequent small-scale ground surveys.
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